Mu2e crystal calorimeter front-end electronics: design and characterisation

Calor 2022 Daniele Paesani on behalf of the **Mu2e calorimeter group**

‡Fermilab

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Production Target

- Searching for **charged lepton flavor-violating** $\mu
 ightarrow e$ **coherent conversion** in the field of an Al nucleus
- Intensity frontier experiment: CLFV process strongly suppressed in SM (BR $\leq 10^{-54}$) \rightarrow its observation implies BSM physics

- $200 \ keV/c$) and the **EM calorimeter**

A glimpse of Mu2e

Probing a conversion/capture rate $R_{\mu e} < 3 \cdot 10^{-17}$ (@ 90% C.L.), representing a 10⁴ improvement on the current experimental limit • 10¹⁰ μ/s selected and transported via superconducting magnet system to the AI stopping target where they undergo nuclear capture • The 104.96 MeV conversion e⁻ signature is identified via a complementary measurement carried out by the straw-tube tracker ($\sigma_p < \sigma_p$

Calorimeter at a glance

Calorimeter architecture

INFŃ

- Two annular disks w/ 674 undoped CsI 34 x 34 x 200 mm³ crystals each
- 10 X₀ (200 mm) crystal depth and 70 disk cm spacing
- 30 cm inner disk bore, 66 cm outer bore
- Readout via 2 large area UV-extended SiPMs per crystal
- SiPM + FEE fluid cooling down to -10° C

Calibration methods

- 530 nm laser for SiPM gain monitoring and timing alignment
- Liquid radio source for crystal equalisation w/ 6 MeV photon
- In-situ calibration with crossing MIPs, DIO's and other physics processes

Tasks

- PID capabilities w/ e^{-}/μ rejection factor > 200
- Stand alone online trigger capability (HLT)
- Cluster-based seeding for track finding
- Large acceptance for conversion electrons

Requirements

- energy resolution $\sigma_{\rm E}/{\rm E} = O(10\%)$ @ 100 MeV
- timing resolution $\sigma(t) < 500 \text{ ps} @ 100 \text{ MeV}$
- Fast signal for Pileup and Timing
- $\sigma_{xy} < 1 \text{ cm}$

Operating environment

- 1 T B-field
- 10⁻⁴ mbar vacuum
- TID up to 100 krad
- 1MeV-neq fluence up to $3x10^{12}$ 1/cm² on crystals (RIN<0.6 MeV)

Signal chain overview

- 2700 readout channels w/ fully custom readout chain (from SiPM to DAQ)
- 10 electronics crates/disk (280 boards total)
- SiPM cooling to -10 °C

INFŃ

2700 Read-Out Units

- Two fully independent readout channels per cry
- 2 large-area UV-extended SiPM
- 2 Front-End Electronics (FEE) boards
 - SiPM amplification and shaping
 - Digitally controlled SiPM monitoring and biasing

140 Mezzanine Boards (MB)

- Slow-control distribution
- FEE power distribution
- ARM-microprocessor based

140 custom digitiser boards (DIRAC)

- Signal digitisation @ 200 Msps w/ 12-bit flash ADC
- Digitisation to allow good signal reconstruction despite the high expected pileup
- PolarFire rad-hard FPGA
- VTRX 10 Gbps optical link to Detector Control System
- DIRAC v3 prototype ready

Read-out units

- Two custom large area SiPMs from Hamamatsu
- Two independent readout channels per crystal
- Integrated FEE + slow control board
- Thermal block for SiPM cooling
- Fibre optic coupler for laser system distribution

SiPM qualification and QC

Mu₂e SIPM

- 6 individual 6x6 mm² 50 µm px MPPCs (Hamamatsu)
- UV-extended design matches the CsI 315 nm emission peak (silicone protection layer)
- 30 % PDE @ 300 nm

INFN

TNID qualification

- Neutron irradiation tests @ ENEA-FNG and HZDR
- Required gain drop < 2 after irradiation
- Allowable I_{dark} increase \rightarrow 2 mA/SiPM limit on FEE linear regulator
- ROU cooling from 0 to -10° C to extend SiPM operation (I_{dark} halves every 10 °C reduction)

QC steps

- V_{br}, I_{dark}, gain*PDE measured for each cell
- 5 SiPM/batch underwent $10^{12} n_{1MeV}/cm^2$ irradiation test
- QC on all production SiPMs completed in late 2019
- 2% of out-of-spec components

Other requirements

- gain > 10⁶ @ $V_{ov} = 3 V$
- recovery time < 100 ns @ 15 ohm
- Good V_{bd} and I_{dark} matching over 6 cells
- MTTF > 10⁶ h @ 20 °C
- Low thermal resistance

Front-end boards

Requirements

- Signal rise time > 25 ns for appropriate time reconstruction
- Rate capability up to 1 MHz, short fall time
- High stability SiPM management
- Rad-hardness (100 krad TID, 10¹² 1MeV-neq/cm²)

Signal chain

- 2 x 3-series SiPM connection to decrease MPPC capacitance
- Common-base BJT fast current adder with low input Z
- Selectable gain (1 or 2) w/ 2 V dynamic range
- Pole-zero cancellation
- 3-pole pulse stretcher
- Differential line driver

Slow control

- on-board high-stability, low-ripple HV linear regulator
- Programmable bias up to 200V via 12-bit DAC (50 mV/lsb)
- 2 mA SiPM current capability w/ OCP
- Integrated SiPM bias, current and temperature monitor via 12bit SPI ADC

FEE qualification and QC overview

General qualification steps

- Radiation hardness qualification (next slides)
 - TID: dose up to 100 krad (SF = 12)

INFN

- TNID: fluence up to 3E+11 1-MeV-neq(Si)/cm² (SF = 6)
- High-energy hadrons (> 20 MeV) fluence up to 1E+10 p/cm² (SF=6)
- **B-field** tests up to 1.5 T to check DC-DC efficiency and power dissipation (+ 20 % increase)
- Tests in vacuum

FEE calibration and QC

- 6 hours **burn-in** test @ 65 °C
- Calibration of **linear regulator** output
- Calibration of **temperature and current** monitors
- FEE pulsing to evaluate signal shape and gain linearity

FEE status

- Production completed in late 2021
- Read-out Units **assembly** in progress
- QC in progress (2250/2500 completed ROUs @ FNG)

Read out units QC

FEE total ionising dose tests

TID campaign

- Qualification @ ENEA-Calliope w/ ⁶⁰Co photons
- TIDs for FEE up to **120 krad** @ 500 rad/h rate
- Different test configurations
- Final rad-hard components choice after 2-y qualification (first ADC choice died after 100 krad):
 - SPI ADC1280S022CIMT (TI)
 - SPI 121S101CIMKX DAC (TI)
 - Rad-hard linear regulators
 - Design successfully validated
- Regulator and monitor stability < 0.1 % up to 120 krad
- Unaltered **WF shape** and FE **gain** after irradiation
- Failure of linear regulator drive MOSFET due to charge trapping observed for extreme operating conditions (never met during experimental runs)

D. Paesani Calor 2022

Neutrons and SEU vertical slice test

Neutron campaign

- Qualification @ ENEA Frascati Neutron Generator
- DT fusion 14 MeV neutron source

INFN

- TNID requirements up to 10¹² 1-MeV-neq(Si)/cm²
- Exposure of both FEE, MB and DIRAC boards
- Cumulative TNID damage and SEU campaign

TNID cumulative damage

- No TNID effect on FE amplifier
- No TNID effect on slow control and signal chain stability

400 $p_{fail,1} = \frac{1}{c+r}$ $p_{fail,n} = p_1(1-p_1)^{n-1}$ 350 250 250 200 Ledneuck count 200 150 FNG, MB test C = critical RAM size100 50 800 600 700 900 500 400 SEU events

Neutron induced SEU on MB

- Neutron irradiation to check SEU occurrence and recovery on MB+FEE during 10¹² n/cm² exposure
- Critical RAM size (≈ 327 bytes) determined via simulation on MB processor \rightarrow 200 SEU on average cause functional interrupt

Test purpose

- Check corruption of
 - Microprocessor RAM and flash ROM
 - Communication (I2C, SPI) with FEE boards
- Validate SEU detection:
 - Communication checksums
 - Memory integrity check
- Validate SEU correction:
 - MB configuration memory scrubbing
 - Watch dog timer
 - Reset or power cycling

Results

- 96 minutes test up to 10^{11} n/cm²
- No single-event-latchup observed
- Functional interrupts due to SEU detected every 2*10 $n/cm^2 \rightarrow O(10 \text{ months})$ during data taking
- WDT triggered board reset correctly recovered operations of MB + FEE

SEE validation w/ protons

Single event effects test with protons

- 10¹⁰ p/cm² high-energy (> 20 MeV) hadrons fluence requirement for MB+DIRAC validation
- Tests at Warrenville Proton Centre w/ 200 MeV protons
- Campaign started in 2019 with FEE+MB test

Warrenville Medical proton irradiation

INFŃ

- MB + FEE irradiation
- Slow control operated by ramping HV bias every 20s
- External monitoring of the setup and readout via DCS
- Fixed beam energy at 200 MeV, 10 cm beam spot
- Proton flux ramped up to 6E7 p/cm²/s
- No SEL detected
- No erratic behaviour was observed
- Slow control functionality was not impaired
- Occasional communication loss not due to MB, but to Ethernet controller

Next steps

- Final vertical slice test of DIRAC, MB and FEE due in summer 2022
- Determining the necessary **scrubbing rate** for FPGAs, FEE and MB memory
- Mean-time between functional interrupt evaluation
- SEU recovery validation

12

INFN

VST with cosmics

Module-0

- Large scale prototype w/51 crystals matrix
- Same cooling system as final calorimeter / ullet
- Same fibre optic laser calibration system as • final calorimeter

Vertical slice test

- Final MB and DIRAC versions installed on 1 electronics crate
- Final Mu2e readout chain implemented from FEE to DIRAC digitiser \bullet
- Cosmic selector to test whole signal chain with MIPs
- Validation of energy and timing calibration algorithms
- Tests in vacuum and with cooling system •

SENSOR 0 Amplitude (ADC counts)

13

Pulse acquisition and processing

- Individual SiPM pulse templates are generated by aligning and averaging signals from a large dataset of hits •
- Templates are nodes with polynomial interpolation and fixed proportion, fitted on each waveform using a 3 parameter optimization
- Template fit is used for timing and charge reconstruction, along with pile-up disentangling
- Template fit performs well also in presence of radiation-induced noise on the WFs
- Individual templates for each channel (and particle)

INFN

VST with cosmics results overview

- Module-0 w/ final FEE and readout chain

- NPE (from asymmetry) and **SiPM gain stability** check (+1.6 % /°C for SiPM gain)
- iterative algorithm to a level < 5 ps RMS

Fermilab

Conclusion

- The front-end and readout chain development for the calorimeter had to face challenges due to the harsh operating environment and the required high levels of precision and stability
- The readout chain design was qualified and validated trough long and extensive test campaigns
- The construction of the Mu2e experiment is under way and the calorimeter commissioning phase is approaching

Mu2e many

Bockup

Backup

Radiation environment

INFN

- Mu2e detector solenoid simulation via MARS15
- Simulated events
 - beam flash (all particles within the beam other than a muon stopped either in the stopping target or in the beam dump);
 - DIO electrons
 - neutrons, protons and photons due to nuclear capture
 - Out-of-target particles produced by muons stopped outside the stopping target
- Calorimeter electronics requirements
 - TIDs up to 100 krad (SF = 12)
 - NIEL fluences up to $3E+10 1 \text{MeV-neq(Si)/cm}^2$ (SF = 6)
 - High-energy hadrons (> 20 MeV) fluence up to 1E10 p/cm²

Mu2e radiation environment

Test beam validation

1531

1.5 **t [ns]**

19.56 / 15

240.9 7.6

0.1664 0.0049

0.1874 0.0035

INFN

Beam test

- **LNF-INFN Beam Test Facility** ullet
- e⁻ beam up to 100 MeV ullet
- orthogonal and tilted beam runs
- Single particle selection •
- Great data-MC agreement
- 30 pe/MeV LY ullet

Module-0

- Large scale prototype \bullet
- 51 crystals
- Final Mu2e readout \bullet
- Final FEE
- Cooling system
- Laser calibration system

19

