Probing charged lepton flavor violation with the Mu2e experiment

<u>S. E. Müller</u>, A. Ferrari, O. Knodel, and R. Rachamin for the Mu2e-collaboration *Helmholtz-Zentrum Dresden-Rossendorf*

DPG Meeting Mainz, (virtual), March 31, 2022

Mitglied der Helmholtz-Gemeinschaft

S. E. Müller | HZDR | https://www.hzdr.de

Motivation

The Standard Model of particle physics currently contains:

- Quark mixing
- Transitions between charged and neutral leptons of same flavor
- Neutrino oscillations

Motivation

The Standard Model of particle physics currently contains:

- Quark mixing
- Transitions between charged and neutral leptons of same flavor
- Neutrino oscillations

No charged lepton flavor violation (CLFV) observed so far!

Motivation

The Standard Model of particle physics currently contains:

- Quark mixing
- Transitions between charged and neutral leptons of same flavor
- Neutrino oscillations

No charged lepton flavor violation (CLFV) observed so far!

Mu2e will search for the neutrinoless conversion of a muon into an electron in the coulomb field of a nucleus ($\mu N \rightarrow eN$) with a projected

upper limit of 6×10^{-17} (90% CL)

Current limit by SINDRUM-II (PSI): B($\mu Au \rightarrow eAu) < 7 \times 10^{-13} (90\% \mbox{ CL})$

SM prediction via neutrino mixing is $\sim 10^{-54}$, but extensions of SM predict values up to $\sim 10^{-14}$ (Leptoquarks, heavy neutrinos, SUSY,...)

 \Rightarrow Unique possibility to test for New Physics

New physics

Model independent Lagrangian: $L_{CLFV} = \frac{m_{\mu}}{(\kappa + 1)\Lambda^2} \overline{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(\kappa + 1)\Lambda^2} \overline{\mu}_L \gamma_{\mu} e_L \left(\overline{u}_L \gamma^{\mu} u_L + \overline{d}_L \gamma^{\mu} d_L \right)$ "Dipole term" "Contact term" 50000 Λ : effective mass scale of New Physics all limits at 90% CL K: relative contribution of contact term Λ $CR(\mu N \rightarrow eN \text{ on Al}) < 6 \times 10^{-18}$ (TeV/c^2) Dipole term: dominates for $\kappa \ll 1$ 10000 TeV/c²] 5000 $CR(\mu N \rightarrow eN \text{ on Al}) < 6 \times 10^{-17}$ arXiv:1303.4097 $BR(\mu \rightarrow e\gamma) < 4.2 \times 10^{-14}$ Contact term: dominates for $\kappa \gg 1$ < 1000 SINDRUM-II MEG 50/ ш $BR(\mu \rightarrow e\gamma)$ $CR(\mu N \rightarrow eN)$ on Au $< 4.2 \times 10^{-13}$ $< 7 \times 10^{-13}$ → contact Mu2e will probe $\Lambda \sim O(10^3 - 10^4)$ TeV/c² K ĸ.

The Mu₂e experiment

The Mu2e experiment will search for CLFV in the process $(\mu^- + AI) \rightarrow e^- + AI)$

Stopped muons have a lifetime of 864ns in the 1s-orbital of the Al nucleus

- about 60% of stopped muons undergo the muon capture reaction (e.g. $\mu^- + {}^{27}\text{Al} \rightarrow \nu_{\mu} + {}^{27}\text{Mg}$)
- \sim 40% of stopped muons decay in orbit (DIO)
 - Michel spectrum of decay electrons dies around $M_{\mu}/2$
- **CLFV** signal for $\mu \rightarrow e$ conversion gives single mono-energetic electron
 - $E_e = 104.973 \text{ MeV} \simeq M_{11}$

Muons are obtained from 8 GeV proton beam on tungsten target

- time-averaged beam power: 7.3kW
- 4×10^7 protons/pulse, pulse separation: 1695ns
- Magnetic field in Production Solenoid guides produced pions towards Transport Solenoid
- Pions decay into muons

Muons are transported in s-shaped Transport Solenoid

- Absorber foils remove antiprotons
- Solenoidal magnetic fields separate oppositely charged particles
- Collimators select low-momentum negatively-charged muons.

Muons are stopped on aluminum target foils in Detector Solenoid

- stopped muons decay in orbit or are captured by the Al nucleus
- decay electrons are detected by a tracking detector and a calorimeter

Graded fields in the 3 solenoid systems are important

- to increase muon yields
- to suppress backgrounds
- to improve geometric acceptance for signal electrons

Pulsed proton beam allows definition of a "Live Window" for the signal to suppress prompt background (1695ns peak-to-peak):

- Fermilab accelerator complex provides optimal pulse spacing for Mu2e
- 700 ns delay allows to suppress prompt background from pions by ${\sim}10^{-11}$
- Must achieve extinction (N $_{p^+}$ out of bunch)/(N $_{p^+}$ in bunch) $\leq 10^{-10}$

Straw drift tube tracker

- Iow mass straw drift tubes (5mm diam.)
- > 20 000 straws
- \blacksquare in vacuum and at ${\sim}1$ T magn. field
- **•** momentum resolution $\sigma_{\rm p}$ < 180 keV/c

■ inner 38 cm not instrumented → "blind" to low-momenta DIO electrons

Straw drift tube tracker

■ inner 38 cm not instrumented → "blind" to low-momenta DIO electrons

Calorimeter

- composed of two rings separated by half a wavelength of signal electron trajectory helix
- each ring composed of ~700 pure CsI crystals read out by SiPMs
- independent measurement of
 - energy ($\sigma_{\rm E}/{\rm E}\sim$ 5%)
 - time ($\sigma_{
 m t}\sim$ 0.5ns)
 - position ($\sigma_{
 m Pos} \sim$ 1cm)
- independent trigger information
- particle ID
- calibration with activated liquid source

The cosmic ray veto detector

The cosmic ray veto system (CRV) covers entire Detector Solenoid and half of the Transportation Solenoid (TS)

Mitglied der Helmholtz-Gemeinschaft S. E. Müller | HZDR | https://www.hzdr.de

The cosmic ray veto detector

Without CRV, \sim 1 background event per day mimicking signal produced by cosmic-ray muons

- 4 overlapping layers of scintillator bars (5 \times 2 \times \sim 450 cm³)
- 2 wavelength-shifting fibers/bar
- Read out both end of each fiber with SiPMs
- \blacksquare required inefficiency $\sim 10^{-4}$

The Stopping-Target Monitor

High-purity Germanium detector to determine overall muon-capture rate on AI to the level of 10%

- measure X- and γ -rays from muonic Aluminum
 - 347 keV 2p-1s X-ray (80% of muon stops)
 - 844 keV delayed γ -ray (5% of muon stops)
 - **1809 keV** γ-ray (30% of muon stops)

- line-of-sight view of Muon Stopping Target
- sweeper magnet to reduce charged particle background and radiation damage to detector
- It was decided to accompany the HPGe detector with a LaBr₃ detector (worse energy resolution, but can take higher rates)

The Stopping-Target Monitor shieldhouse design

HPGe detector needs to be in an angled position due to limited space. Detectors "see" the Aluminum stopping target through collimator holes in tungsten shielding block.

Magnet production

Production Solenoid (PS) coil fabrication completed (General Atomics):

Mitglied der Helmholtz-Gemeinschaft S. E. Müller | HZDR | https://www.hzdr.de

Magnet production

Upstream Transport Solenoid (TSu) cold mass assembled and thermal shield fitted:

Downstream Transport Solenoid (TSd) assembly close behind.

The Heat and Radiation Shield (HRS)

The bronze heat and radiation shield was delivered to Fermilab, and was lowered into the PS area inside the Mu2e building:

Production Target

The tungsten production target absorbs about 10% of beam power (\simeq 700 W):

Tracker panel production

166 out of 240 tracker panels produced, 12 of the 36 planes assembled.

Panels shipped to Fermilab for further quality assurance and full tracker assembly.

Calorimeter status

- Production of CsI crystals finished
- All SiPMs are tested
- FEE boards delivered, undergoing quality control

Prototype with 51 crystals and 102 SiPMs and FEE boards has been built

- Successful beamtime with e⁻ beam at BTF, Frascati
- 5.4% at 100 MeV energy resolution
- Timing resolution < 150 ps

Calorimeter status

- Production of CsI crystals finished
- All SiPMs are tested
- FEE boards delivered, undergoing quality control

Mechanical integration tests:

- Upstream disk
- 2 FEE/Back plates
- 10 electronics crates and manifolds

Source system DT generator delivered to Fermilab

Mu2e@HZDR: The ELBE radiation source

The ELBE "Electron Linac for beams with high Brilliance and low Emittance" delivers multiple secondary beams.

- $\, E_e \leq$ 40 MeV; $I_e \leq$ 1 mA; Micropulse duration 10 ps $< \Delta t <$ 1 μs

Mu2e@HZDR: The ELBE radiation source

The ELBE "Electron Linac for beams with high Brilliance and low Emittance" delivers multiple secondary beams.

- $\, E_e \leq$ 40 MeV; $I_e \leq$ 1 mA; Micropulse duration 10 ps $< \Delta t <$ 1 μs

gELBE: Bremsstrahlung gamma beam facility (detector design for STM and calorimeter board testing)

gELBE utilizes bremsstrahlung production from an electron beam impinging on niobium radiator foils. A dipole magnet sweeps away charged particles in the beam.

Mitglied der Helmholtz-Gemeinschaft S. E. Müller | HZDR | https://www.hzdr.de

Use of gELBE's pulsed bremsstrahlung γ -beam with max. energy of 15 MeV.

- gELBE pulse separation of 1.23μs or 2.46μs close to Mu2e's 1.7μs proton pulse separation
- 150kcps of gamma rates expected for Mu2e Stopping-Target Monitor detectors during nominal beam pulse
 - high average γ energy (\sim 5 MeV)
 - high beam pulse occupancy (\sim 20%)
 - large beam intensity fluctuations might occur (up to a factor of 6)
- First beamtime in 2017:
 - Measure HPGe detector performance in the gELBE beam (energy resolution, radiation damage,...)
 - Understand best beam and detector geometry and position (including absorbers)
 - HZDR provided radiation transport simulations using the FLUKA code to estimate γ energy spectrum, energy deposit in crystal etc.
- Second beamtime in September 2021 to test LaBr₃ detector performance
 - running in "streaming" and "veto" mode to test detector response to beam fluctuations (up to 800kcps)
- Third beamtime scheduled end of April 2022
 - test DAQ chain for both the HPGe and LaBr $_3$ detector

Beamtime simulations with FLUKA:

- Simulate gELBE bremsstrahlung spectrum starting from electron beam hitting niobium foil and propagate it to detector position
- Detector behind lead wall with 1cm² collimator hole and copper/aluminum absorber plates to shield from lead fluorescence.

Beamtime simulations with FLUKA:

- Simulate gELBE bremsstrahlung spectrum starting from electron beam hitting niobium foil and propagate it till detector position
- Detector behind lead wall with 1cm² collimator hole and copper/aluminum absorber plates to shield from lead fluorescence.

Beamtime simulations with FLUKA:

- Simulate gELBE bremsstrahlung spectrum starting from electron beam hitting niobium foil and propagate it till detector position
- Detector behind lead wall with 1cm² collimator hole and copper/aluminum absorber plates to shield from lead fluorescence.

The goal of the beamtime was to test whether the LaBr₃ detector system can deal with the rate fluctuations anticipated at the Mu2e experiment.

The goal of the beamtime was to test whether the LaBr₃ detector system can deal with the rate fluctuations anticipated at the Mu2e experiment.

The goal of the beamtime was to test whether the LaBr₃ detector system can deal with the rate fluctuations anticipated at the Mu2e experiment.

The goal of the beamtime was to test whether the LaBr₃ detector system can deal with the rate fluctuations anticipated at the Mu2e experiment.

A calibration source including Y-88 line at 1836 keV was used to mimick the muon capture on Aluminum emission at 1809 keV.

 \rightarrow determine energy resolution for 1836 keV line over Bremsstrahlung spectrum at increasing levels of gELBE electron current

Streaming mode: Take data at 406 kHz and 813 kHz pulse frequency at 500 MHz sampling with increasing electron current (for 813 kHz, overlay a 0.2s-on/4s-off window to protect PM tube)

Veto mode: Take data at 813 kHz and 1625 kHz pulse frequency at 500 MHz sampling with increasing electron current, overlay a 0.2s-on/4s-off window and veto the Bremsstrahlung flash pulses to bring the "flash" background down

"Nominal" expected Mu2e conditions were found at a pulse frequency of 813 kHz and 1.1 uA electron current: 150 kcps with 3.8 MeV average photon energy.

Testing the LaBr₃ detector at the gELBE beamline: Prel. results

Data taken in streaming mode shows stable energy resolution (406 kHz pulse frequency):

Testing the LaBr₃ detector at the gELBE beamline: Prel. results

Data taken in streaming mode shows stable energy resolution (406 kHz pulse frequency):

Testing the LaBr₃ detector at the gELBE beamline: Prel. results

Data taken in streaming mode shows stable energy resolution (406 kHz pulse frequency):

1500

Data taken in veto mode shows that detector system can handle the rates using the pulse veto to suppress flash background (813 kHz pulse frequency):

The origin of a time-dependent gain drift in the runs with 0.2son/4s-off structure still to be understood (for t > 5 ms).

Mu2e MC simulations with FLUKA

The Mu2e offline simulation geometry has been (partly) ported to FLUKA:

- Simulate production and stopping target rates and perform shielding assessment

Mu2e MC simulations with FLUKA

The Mu2e offline simulation geometry has been (partly) ported to FLUKA:

- Importing Mu2e magnetic fieldmaps allows to transport charged particles through the solenoid systems

Mu- fluence rate for 6.25E12 prot/s on PT [mu-/cm2/s]

Mu2e MC simulations with FLUKA

The Mu2e offline simulation geometry has been (partly) ported to FLUKA:

- Importing Mu2e magnetic fieldmaps allows to transport charged particles through the solenoid systems

Mu- fluence rate for 6.25E12 prot/s on PT [mu-/cm2/s]

We have also started to compare results with MCNP6 simulation code

Development of FPGA firmware using HLS

Idea is to analyze the detector data directly in hardware on FPGA.

- Use High-Level-Synthesis (HLS) to port analysis algorithms to FPGA
- Integrate into designated STM Read-Out-Controller FPGA firmware

Development of FPGA firmware using HLS

Idea is to analyze the detector data directly in hardware on FPGA.

- Use High-Level-Synthesis (HLS) to port analysis algorithms to FPGA
- Integrate into designated STM Read-Out-Controller FPGA firmware

Pulse-Integration with quality analysis to identify pile-up for LaBr₃-detector data acquisition:

- takes up to 400 MegaSamples/s as input
- outputs for each pulse trigger time, energy and pile-up flag

Development of FPGA firmware using HLS

Idea is to analyze the detector data directly in hardware on FPGA.

- Use High-Level-Synthesis (HLS) to port analysis algorithms to FPGA
- Integrate into designated STM Read-Out-Controller FPGA firmware

Pulse-Integration with quality analysis to identify pile-up for LaBr₃-detector data acquisition:

- takes up to 400 MegaSamples/s as input
- outputs for each pulse trigger time, energy and pile-up flag

Further algorithms studied include a zero-suppression & cutout algorithm and a Moving-Window-Deconvolution algorithm for the analysis of HPGe data.

Conclusion & Outlook

- The Mu2e experiment at FERMILAB will search for the neutrinoless conversion of a muon into an electron in the coulomb field of an Aluminum nucleus
 - projected upper limit: 6×10^{-17} (90% CL)
- Detector construction advancing (despite COVID)
- Solenoid construction in good shape (PS units fabricated, TS units thermal shield assembly, DS units fabrication started)
- Beamtimes at HZDR's ELBE radiation source for tests of STM detector design
 - Test of LaBr₃ detector's response to anticipated Mu2e beam fluctuations September 2021
 - Next month's beamtime will concentrate on DAQ chain for HPGe and LaBr3 detectors
- Studies with FLUKA and MCNP6 simulation codes are under way
 - production and stopping target rates
 - shielding assessment
- Development of FPGA firmware using HLS for STM data acquisition
- With a first run of physics dataking starting in 2026, Mu2e will either unambiguously discover CLFV or push the limit on muon → electron conversion by four orders of magnitude

Mu2e Collaboration

More than 200 scientists from 38 institutions:

Mitglied der Helmholtz-Gemeinschaft S. E. Müller | HZDR | https//www.hzdr.de