# New physics behind the new muon g-2 puzzle?

#### Paride Paradisi

University of Padova and INFN

ICHEP2022 Bologna, 8th July 2022

Based on Di Luzio, Masiero, Paradisi and Passera, PLB 829 (2022).

### Experimental status

• April 7<sup>th</sup> 2021: Muon g-2 experiment at FNAL confirms BNL!



```
a_{\mu}^{EXP} = (116592089 \pm 63) \times 10^{-11} [0.54ppm] \text{ BNL E821} a_{\mu}^{EXP} = (116592040 \pm 54) \times 10^{-11} [0.46ppm] \text{ FNAL E989 Run 1} a_{\mu}^{EXP} = (116592061 \pm 41) \times 10^{-11} [0.35ppm] \text{ WA}
```

- $\bullet\,$  FNAL aims at 16  $\times\,10^{-11}.$  First 4 runs completed, 5th in progress.
- Muon g-2 proposal at J-PARC: Phase-1 with similar BNL precision.

## "Old muon g-2 puzzle"

• Status of  $a_\mu \equiv rac{g_\mu-2}{2}$  as of April 7 $^{
m th}$  2021 (with  $a_\mu^{
m SM}$  based on  $a_{\mu,\,e^+e^-}^{
m HLO}$ )

$$a_{\mu}^{\rm SM} = 116591810(43) \times 10^{-11} \,_{\rm [WP20]}$$

$$\Delta a_{\mu} = a_{\mu}^{\rm EXP} - a_{\mu}^{\rm SM} \equiv a_{\mu}^{\rm NP} = 251 \,_{\rm (59)} \times 10^{-11} \qquad (4.2\sigma \,_{\rm discrepancy!})$$

$$\underbrace{(0.1)_{\rm QED}, \quad (1)_{\rm EW}, \quad (18)_{\rm HLbL}, \quad (40)_{\rm HVP},}_{(43)_{\rm TH}} \qquad (41)_{\delta a_{\mu}^{\rm EXP}}.$$

 $a_u^{\text{EXP}} = 116592061(41) \times 10^{-11} [\text{BNL} + \text{FNAL}]$ 

- Hadronic uncertainties (HLbL & HVP) are very hard to improve.
- $\delta a_u^{\rm EXP} pprox 16 imes 10^{-11}$  by the E989 Muon g–2 exp. in a few years.
- Low-energy determinations of  $\Delta a_{\mu}$  assume that systematic and hadronic uncertainties are under control at the outstanding level of  $\Delta a_{\mu} < 10^{-9}!$

## New Physics for the muon g - 2: at which scale?

•  $\Delta a_{\mu}$  discrepancy at  $\sim$  4.2  $\sigma$  level:

$$egin{aligned} \Delta \emph{a}_{\mu} &= \emph{a}_{\mu}^{
m EXP} - \emph{a}_{\mu}^{
m SM} \equiv \emph{a}_{\mu}^{
m NP} = (2.51 \pm 0.59) imes 10^{-9} \ \Delta \emph{a}_{\mu} &\equiv \emph{a}_{\mu}^{
m NP} pprox (\emph{a}_{\mu}^{
m SM})_{\it weak} pprox rac{\emph{m}_{\mu}^2}{16\pi^2\emph{v}^2} pprox 2 imes 10^{-9} \end{aligned}$$

- ▶ NP is at the weak scale ( $\Lambda \approx \nu$ ) and weakly coupled to SM particles.\*
- ▶ NP is very light ( $\Lambda \lesssim 1$  GeV) and feebly coupled to SM particles.
- ▶ NP is very heavy  $(\Lambda \gg v)$  and strongly coupled to SM particles.

\*Favoured by the hierarchy problem and by a WIMP DM candidate but disfavoured by the LEP and LHC bounds (supersymmetry being the most prominent example).

## HLO contribution from $e^+e^- \rightarrow hadrons$



Paride Paradisi (University of Padova and INFN)

#### HLO contribution from lattice QCD

Great progress also in lattice QCD, where spacetime is modeled as a discrete grid of points. The BMW collaboration reached a 0.8% precision!

$$a_{\mu}^{HLO} = 7075(23)_{stat}(50)_{syst} [55]_{tot} \times 10^{-11}$$

2-2.5σ tension with the "data-driven" evaluations.



Borsanyi et al (BMWc), Nature 2021

## "New muon g-2 puzzle"

$$(a_{\mu}^{\text{HVP}})_{\text{EXP}} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM, rest}}$$

$$(a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{WP20}} = 6931(40) \times 10^{-11}$$

$$(a_{\mu}^{\text{HVP}})_{\text{BMW}} = 7075(55) \times 10^{-11}$$



"new puzzle": if BMW is correct, the "old" g-2 discrepancy (4.20) would be basically gone



however, this brings in a new tension with  $e^+e^-$  data (2.2 $\sigma$ )

Here, NP in  $\sigma_{\rm had}(e^+e^- \to {\rm hadrons})$  such that

[LDL, Masiero, Paradisi, Passera 2112.08312]

- $|.~(a_\mu^{\rm HVP})_{e^+e^-}^{\rm WP20}\approx (a_\mu^{\rm HVP})_{\rm EXP}$
- 2. the approximate agreement between BMW and EXP is not spoiled
- 3. w/o a direct contribution  $a_{\mu}^{\rm NP}$  (i.e. NP not in muons)

## Consequences of the BMW result

- Can  $\Delta a_{\mu}$  be due to missing contributions in  $\sigma(e^+e^- \to had)$ ?
  - An upward shift of  $\sigma(s)$  also induces an increase of  $\Delta \alpha_{\rm had}^{(5)}(M_Z)$  defined by:

$$\alpha(M_Z) = \frac{\alpha}{1 - \Delta\alpha(M_Z) - \Delta\alpha_{\rm had}^{(5)}(M_Z) - \Delta\alpha_{\rm top}(M_Z)}$$

$$a_\mu^{
m HLO} \simeq rac{m_\mu^2}{12\pi^3} \int_{4m_\pi^2}^\infty ds \, rac{\sigma(s)}{s} \,, \qquad \Delta lpha_{
m had}^{(5)} = rac{M_Z^2}{4\pilpha^2} \int_{4m_\pi^2}^\infty ds \, rac{\sigma(s)}{M_Z^2-s}$$

- A change in  $\sigma(e^+e^- \to had)$  is strongly disfavoured by:
  - **EW-fit for**  $\sqrt{s}\gtrsim 1$  **GeV** [Marciano, Passera, Sirlin, '08, Keshavarzi, Marciano, Passera, Sirlin, '20, Crivellin, Hoferichter, Manzari, Montull, '20]. A shift of  $\sigma(e^+e^-\to had)$  to accomodate the  $\Delta a_\mu$  anomaly would necessarely require new physics to show up in the EW-fit!
- A check of the BMW results by other lattice QCD (LQCD) coll. is worth.
- LQCD coll. should provide  $\Delta lpha_{
  m had}^{
  m LQCD}$  to be compared with  $\Delta lpha_{
  m had}^{e^+e^-}$ .

## Light New Physics in $\sigma_{\rm had}$

ullet Light new physics inducing a sub-GeV modification of  $\sigma_{
m had}$  is the only possibility



[See however Darmé, Grilli di Cortona, Nardi 2112.09139 NP in Bhabha scattering? → backup slides]



2. NP coupled only to hadrons

FSR effects due to NP should be included into  $\sigma_{had}(s)$ , not easy to be accounted for... (depend on exp. cuts and mass of NP)

however, we know that in the QED case

$$(a_{\mu}^{\text{HVP}})_{a+a^-}^{\text{FSR}} \approx 50 \times 10^{-11}$$
  $(a_{\mu}^{\text{HVP}})_{\text{BMW}} - (a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{WP20}}| \approx 150 \times 10^{-11}$ 

## Light New Physics in $\sigma_{ m had}$



3. NP coupled both to hadrons and electrons



a positive sift on  $(a_{\mu}^{\mathrm{HVP}})_{e^+e^-}$  requires  $\Delta\sigma_{\mathrm{had}}^{\mathrm{NP}} < 0$  (negative interference)

## A new light Z' vector boson

• Requirements:



2. A sizeable negative interference with the SM



a light spin-1 mediator with vector couplings to first generation SM fermions

$$\mathcal{L}_{Z'} \supset (g_V^e \, \overline{e} \gamma^\mu e + g_V^q \, \overline{q} \gamma^\mu q) Z'_\mu \qquad q = u, d \qquad m_{Z'} \lesssim 1 \text{ GeV}$$

It can be shown that (neglecting iso-spin breaking corrections due to NP)

$$\frac{\sigma_{\pi\pi}^{\text{\tiny SM+NP}}}{\sigma_{\pi\pi}^{\text{\tiny SM}}} = \left|1 + \frac{g_V^e(g_V^u - g_V^d)}{e^2} \frac{s}{s - m_{Z'}^2 + i m_{Z'} \Gamma_{Z'}}\right|^2$$

# A new light Z' vector boson



At least two independent bounds prevent to solve the "new muon g-2 puzzle"!

### MUonE: a new determination of $\Delta \alpha_{had}$

#### MUonE: Muon-electron scattering @ CERN



- $\Delta\alpha_{had}(t)$  can be measured via the elastic scattering  $\mu$  e  $\rightarrow \mu$  e.
- We propose to scatter a 150 GeV muon beam, available at CERN's North Area, on a fixed electron target (Beryllium). Modular apparatus: each station has one layer of Beryllium (target) followed by several thin Silicon strip detectors.



Abbiendi, Carloni Calame, Marconi, Matteuzzi, Montagna, Nicrosini, MP, Piccinini, Tenchini, Trentadue, Venanzoni EPJC 2017 - arXiv:1609.08987

[Courtesy by M. Passera]

Letter of Intent submitted to CERN SPSC in 2019: Test run approved for 2022

#### MUonE: a new determination of $\Delta \alpha_{\rm had}$

 The leading hadronic contribution a<sub>μ</sub>HLO computed via the timelike formula:



$$a_{\mu}^{\rm \scriptscriptstyle HLO} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma_{\rm had}^0(s)$$

$$K(s) = \int_0^1 dx \, \frac{x^2 (1 - x)}{x^2 + (1 - x) \left(s/m_\mu^2\right)}$$

• Alternatively, simply exchanging the x and s integrations:



$$a_{\mu}^{\rm HLO} = \frac{\alpha}{\pi} \int_0^1 dx \, (1-x) \, \Delta \alpha_{\rm had}[t(x)]$$
 
$$t(x) = \frac{x^2 m_{\mu}^2}{x-1} < 0$$

Lautrup, Peterman, de Rafael, 1972

 $\Delta\alpha_{had}(t)$  is the hadronic contribution to the running of  $\alpha$  in the spacelike region:  $a_{\mu}^{HLO}$  can be extracted from scattering data!

• The extraction of  $\Deltalpha_{
m had}$  is not contaminated by NP! [Masiero, PP, Passera, 2020]

#### Outlook

- Fermilab's Muon g-2 experiment confirms BNL's result
- ullet The BMWc lattice result weakens the exp-SM discrepancy, but brings in a tension with  $e^+e^-$  data
  - "new muon g-2 puzzle"



- ullet Here, we considered the possibility this is due to NP (not in muons) that modifies  $\sigma_{
  m had}$
- excluded by a number of exp. constraints
  - other ways in which NP can address this puzzle? —— [Darmé, Grilli di Cortona, Nardi 2112.09139 NP in Bhabha scattering? → backup slides]
- Alternative confirmations of HVP contributions will be crucial (lattice, MUonE, ...)