

Credits: C. Curatolo, P. Sala

by Francesco Collamati, on behalf of the MDI group INFN Rome 12 10 2022

-A is

- The software: FLUKA + LineBuilder
- Code benchmark with MARS: the 1.5TeV case
- First results in the 3TeV case

- - - - -

The software: FLUKA + LineBuilder

- Code benchmark with MARS: the 1.5TeV case
- First results in the 3TeV case

The Software

- FLUKA + LineBuilder used to reconstruct the machine geometry in the simulation
 - Direct connection between optics files and Monte Carlo
 - Easy to test the effect of possible variations in the machine configuration, beam energy, MDI optimization..
- (semi) Automized analysis program to quickly evaluate the effect of any modification

- The software: FLUKA + LineBuilder
- Code benchmark with MARS: the 1.5TeV case
- First results in the 3TeV case

The 1.5TeV case benchmark

- Optics files and MARS results provided by *MAP*
- MDI passive elements retrieved by MAP publications
- Energy cuts:
 - 200keV for γ and e+/-
 - 100keV for neutrons
 - 1MeV for proton & µ
- Only µ decays within 25m from IP considered for the comparison
 - Realistic beam of 2x10¹² µ⁻

The 1.5TeV case benchmark MDI Layout Description

The 1.5TeV case benchmark Sample Event

FLUKA tracking without neutrons

-1- :

The 1.5TeV case benchmark MARS-FLUKA Results Comparison

Residual discrepancies in **particles time and energy distribution**:

- Minor layout differences (passive elements, absorbers)
- Intrinsic differences between codes

The 1.5TeV case benchmark MARS-FLUKA Results Comparison

The role of the Nozzle:

and the second s

- A is

- The software: FLUKA + LineBuilder
- Code benchmark with MARS: the 1.5TeV case
- First results in the 3TeV case

The 3 TeV case

- Simulation baseline: "ideal" muon beam (σ_{x,y}=σ'_{x,y}=0), solenoidal (detector) magnetic field 3.57 T in IR, no liners/masks, minimum beam pipe @1 m
- Machine design and optics files provided by MAP
- Same IR layout and nozzles design for 1.5 TeV

	Q1	Q2	Q 3	Q4	Q 5	Q 6
aperture (mm)	90	110	130	150	150	150
G (T/m)	267	218	-154	-133	129	-128
B (T)	0	0	2	2	2	2
length (m)	1.6	1.85	1.8	1.96	2.3	2.85

Figure 3: Quadruplet FF quadrupole apertures and 5σ beam envelopes for $E_{\text{c.o.m}}$ = 3 TeV and β^* = 5mm. Defocusing magnets with 2 T dipole component are shown in cyan. Beam parameters are given in the summary table of Section 5.

20

15

Time and z muon decay

Z-Position of Parent e- first interaction

-1-

Origin of Beam-Induced Background in the Tracker

Nazar Bartosik

Given a hit in the tracker, central, backward (same side of beam), forward (opposite side of beam), z position of the original particle background that generated it. Important contribution of back scattering on the nozzle on the other side

Dose maps

To produce the doses the black body to dump BIB is substituted by the actual detector in FLUKA

- ME

International UON Collider Collaboration

~10¹⁴

1.5 TeV: 1MeV neutron equivalent

3 TeV: 1MeV neutron equivalent

1.5 TeV: Total Ionizing Dose

~ 10⁻³/10⁻⁴ Grad/y

3 TeV: Total Ionizing Dose

~ 10⁻³/10⁻⁴ Grad/y

Conclusions & Plans

- Software tool up and running
- Comparison 1.5-3TeV:
 - BIB slightly higher @3TeV (except N), but total numbers very similar
 - Similar effect of time cut
 - Need to consider muon decays from 25m for @1.5TeV and 40m @3TeV
 - Dose maps are similar for the 2 energies:
 - 1MeV neutron-eq ~10¹⁴⁻¹⁵ cm⁻²/year on the tracking system and ~10¹⁴ cm⁻²/year on ECAL
 - TID is ~10⁻³ Grad/year on the tracking system and ~10⁻⁴ Grad/year on ECAL

Next Steps: •Run 3TeV simulation with realistic beam •Insertion of liners and masks •Try different dimensions of nozzles •Detailed study of dose maps •Software release

BIB Studies @1.5-3 TeV with FLUKA

Thank you for attention

and the second second

.....