

Università degli Studi di Padova

Physics results with full sim and comparison with fast sim

Luca Giambastiani, on behalf of Detector and Physics working group

Muon Collider Collaboration annual meeting 11-14 Oct. 2022

Outlook

- **1** ab⁻¹ @ 3 TeV Muon Collider considered in this presentation
- Higgs physics results with full simulation compared with studies based on Delphes fast sim
- Full simulation studies include Beam Induced Background (BIB), unless otherwise specified
 - One BIB event superimposed on each physics event
 - BIB simulated for 1.5 TeV Muon Collider
 - \circ Conservative approach: BIB is expected to be more forward at higher E_{CM}
 - 3 TeV BIB preliminary studies show that it's not worse than the 1.5 TeV one

Higgs production

Dominant Higgs production modes:

- WBF: µµ->vvH, ~500 fb
- ZBF: µµ->µµH, ~50 fb
- Both increases logarithmically with E_{CM}
- With ZBF, final state muons are forward, therefore difficult to detect
- In both full and fast sim studies both diagrams are considered

Full Simulation

3 TeV Muon Collider detector used for full sim studies

Fast Simulation

- Events generated with MG5+Pythia8, Delphes to model detector performance <u>https://indico.cern.ch/event/957299/contributions/4023467/attachments/2106044/3541874/delphes_card_mucol_mdi%20.pdf</u>
- Jet p_{τ} resolution 2% for $|\eta| < 0.76$ and 5% for $|\eta| > 0.76$
- Cut-off at $|\eta| = 2.5$ to simulate presence of nozzles
- b-tagging: 50% efficiency, flat in p_T and η
 - c-mistag: 0.07%-3%
 - light mistag: 0.02%-0.7%
- Muon efficiency close to 100%
- Photon efficiency ~90%
- Cut based analysis, resolution estimated from event counts as $\frac{\Delta \sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$
- See: High precision Higgs from high energy muon colliders, JHEP 08 (2022), 185

H->bb fast sim

- Part of the 2-body hadronic Higgs decay study
- Events with two b-tagged jets with $p_T > 40$ GeV and invariant mass 100 GeV < $m_H < 150$ GeV
- Main background from VBF Z->jj

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \longrightarrow 0.76\%$$

H->bb full sim

- Signal µµ->(H->bb)X and background µµ->qqX (q=b,c) generated with Whizard+Pythia8. X is a pair of neutrinos or muons
- Required 2 jets with a secondary vertex each
- S= 59 500, B=65 400 in 1 ab⁻¹
- Signal yield from template fit to pseudo-experiments using invariant mass
- Statistical relative uncertainty on σ x BR = 0.75%

H->WW* fast sim

- Semileptonic decay: full Higgs reconstruction not possible
- Events with 2 R=0.5 jets + 1 isolated lepton, all with p_{τ} > 20 GeV
 - **Note:** electron and muon decays used together Ο
- Dominant backgrounds:
 - On-shell diboson production
 - $\circ \mu^+\mu^- \rightarrow vv v l jj$
 - $\circ \mu^+\mu^- \rightarrow ||\nu| ||\nu|$
- $5 \text{ GeV} < m_{jj} < 90 \text{ GeV}, 20 \text{ GeV} < m_{jjl} < 110 \text{ GeV}$ $40 \text{ GeV} < E_{ij} < 700 \text{ GeV}, 85 \text{ GeV} < E_{ijl} < 800 \text{ GeV}$

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \longrightarrow 1.7\%$$

H->WW* full sim

- 1 Muon + 2 jets final state (no electron)
- Signal and backgrounds (with and without Higgs) simulated with Whizard+Pythia8
- Cuts on two BDTs to select signal vs backgrounds
- S=2 430, B=2 600 in 1 ab⁻¹

H->ZZ* fast sim

- Events with 2 leptons and 2 R=0.5 jets, all with $p_T > 20 \text{ GeV}$
 - Note: electron and muon decays used together
- The pair of either leptons or jets with invariant mass closer to m_z is assigned to the on-shell Z

	Main backgrounds:		4j	ZJZŁ	4ℓ
•	\circ $\mu^+\mu^> vv \parallel ii$	$\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu H; \ H \to ZZ^* \to X$	124	103	5
	 μ⁺μ⁻ -> vI II jj 	$\mu^+\mu^- \to \mu^+\mu^- H; \ H \to ZZ^* \to X$	3	9	0
•	20 GeV < m ₇ < 100 GeV for on-shell Z	Backgrounds	6700	50	0

- 5 GeV < m_{7*}^{2} < 60 GeV for off-shell Z
- 100 GeV < m_H < 130 GeV if lepton pair reconstruct the on-shell Z, 80 GeV < m_H < 135 GeV otherwise

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \longrightarrow 11\%$$

1 4: 19:90 40

H->ZZ* full sim

- 2 muons + 2 jets final state
- Signal generated with MG5+Pythia8
- Inclusive μ⁺μ⁻ -> vv μ⁺μ⁻ jj background (excluding signal) generated with Whizard+Pythia8
- BDT used to select signal vs background
- Resolution obtained with cut-based approach and with fit of BDTs, giving the same result

$H \rightarrow \mu^+ \mu^-$ fast sim

- Events with two muons with opposite charge and $p_T > 20 \text{ GeV}$
- Two main backgrounds: $\mu^+\mu^- > \mu^+\mu^- vv$ and $\mu^+\mu^- > \mu^+\mu^-\mu^+\mu^-$
- 124 < m_H < 126 GeV

	σ (fb)	$\epsilon~(\%)$	Ν
$\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu H; \ H \to \mu^+\mu^-$	0.11	52	57
$\mu^+\mu^- \rightarrow \mu^+\mu^- H; \ H \rightarrow \mu^+\mu^-$	0.011	43	5
$\mu^+\mu^- o u_\mu \bar{\nu}_\mu \mu^+\mu^-$	67.2	0.30	198
$\mu^+\mu^- \rightarrow \mu^+\mu^-\mu^+\mu^-$	211	0.16	345

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \longrightarrow 40\%$$

$H \rightarrow \mu^+ \mu^-$ full sim

- Signal and backgrounds generated with MG5+Pythia8
- BIB not used (low impact in muon chambers)
- Selection cuts on two BDTs trained to discriminate signal from the backgrounds
- Uncertainty on signal yield obtained from unbinned maximum likelihood fit to dimuon invariant mass

Process	Expected events with
$105 < m_{\mu\mu} < 145 \text{ GeV}$	1 ab ⁻¹
$\boxed{[1]\mu^+\mu^- \to H\nu_\mu\bar{\nu}_\mu,}$	
$H ightarrow \mu^+ \mu^-$	24.2
$[1]\mu^+\mu^- \to H\mu^+\mu^-,$	
$H ightarrow \mu^+ \mu^-$	1.6
$\mu^+\mu^- ightarrow \mu^+\mu^- u ar{ u}_\mu$	636.5
$\mu^+\mu^- ightarrow \mu^+\mu^-\mu^+\mu^-$	476.4
$[tl]\mu^+\mu^- \to t\bar{t} \to W^+W^-b\bar{b},$	
$W^{\pm} ightarrow \mu^{\pm} u_{\mu}(ar{ u}_{\mu})$	1.1

H->yy fast sim

- Events with at least two isolated photons, no jets and no leptons
- Selected two photons with largest p_T , requiring $p_T > 40$ GeV
- 122 < m_H < 128 GeV

 σ

H->yy full sim

- Signal and backgrounds generated with MG5+Pythia8
- Preliminary result: No BIB at the moment and some minor bkg still missing
- Used a BDT to perform signal vs. background separation
- Cut on BDT output to maximize $S/\sqrt{S+B}$

Process	σ (fb)	Events	
$\mu\mu ightarrow H u u, H ightarrow \gamma \gamma$	0.9025 ± 0.0026	707	
$\mu\mu ightarrow u u \gamma \gamma$	81.98 ± 0.27	30168	
$\mu\mu ightarrow ll\gamma\gamma$	4.419 ± 0.016	2678	
$\mu\mu ightarrow ll\gamma$	159.0 ± 0.6	4738	
$\mu\mu o \gamma\gamma$	60.15 ± 0.03	59933	

Trilinear coupling

- HH->4b, EFT approach, no background considered
- Acceptance cuts:

 $p_T(b) > 30 \text{ GeV}, \quad 10^\circ < \theta_b < 170^\circ, \quad \Delta R_{bb} > 0.4$

• The four most energetic jets in the event are paired to minimize

$$(m_{j_1j_2} - m_H)^2 + (m_{j_3j_4} - m_H)^2$$

• Other requirements:

 $|m_{jj} - m_H| < 15 \text{ GeV}$

 $M_{\text{recoil}} = \sqrt{(p_{\mu^+} + p_{\mu^-} - p_{H_1} - p_{H_2})^2} > 200 \text{ GeV}$

• λ_3 obtained from likelihood fit in bins of m_{HH} $m_{HH} = [0, 350, 450, 550, 650, 750, 950, 1350, 5000]$ GeV

95% CL confidence interval

$$\begin{array}{c|c} \sqrt{s} \mbox{(TeV)} & 3 \\ \mbox{benchmark lumi (ab^{-1})} & 1 \\ \mbox{($\Delta \lambda_3$)_{in}$} & 25\% \end{array}$$

Electroweak couplings of the Higgs boson at a multi-TeV muon collider, Phys.Rev.D 103 (2021) 1,013002

HH->bb bb and trilinear coupling

- Signal and backgrounds (H+bb and 4b) generated with Whizard+Pythia8
- Events with 4 jets, at least 2 must contain a secondary vertex
 - \circ S = 50, B = 432 in 1 ab⁻¹
- BDT trained for sig-vs-bkg discrimination, fit on BDT output to find resolution
 - $\Delta \sigma / \sigma$ of **30%** is found
- Two MLPs are used: HH vs 4b and trilinear vs HH
- Simulated events with different λ_3 hypothesis, resolution on λ_3 obtained from a likelihood scan
 - Stat. uncertainty of ~20% @ 68% CL is found
 - CLIC: [-8%, 11%] @ 68% CL with 2.5 ab^{-1} @ 1.4 TeV + 5 ab^{-1} @ 3 TeV

Higgs couplings from full sim

• The measurement of Higgs width Γ_{H} is the key that allows to determine Higgs couplings from previous measurements of $\sigma \times BR$

 $\sigma(\mu^+\mu^- \to H\nu_\mu\bar{\nu}_\mu) \times BR(H \to xx) \propto g_{HWW}^2 g_{Hxx}^2 / \Gamma_H$

- A study for $\Gamma_{\rm H}$ with full simulation is ongoing
- Previous measurements combined to extract couplings assuming $\Gamma_{\rm H} = \Gamma_{\rm H}^{\rm SM}$
- Results compared with CLIC [Eur. Phys. J. C 77, 475 (2017)]
 - \circ CLIC fitted also $\Gamma_{\rm H}$
 - CLIC used multiple energy stages and larger integrated luminosity
 - CLIC: 25 years program
 - Muon Collider: 5 years 3 TeV stage

	Muon Collider	CLIC
	$1 \text{ ab}^{-1} @ 3 \text{ TeV}$	$0.5 \text{ ab}^{-1} @ 350 \text{ GeV} + 1.5 \text{ ab}^{-1} @ 1.4 \text{ TeV} + 2 \text{ ab}^{-1} @ 3 \text{ TeV}$
Γ_H	SM	3.5%
g_{HZZ}	8.2%	0.8%
g_{HWW}	0.9%	0.9%
g_{Hbb}	0.8%	0.9%
$g_{H\mu\mu}$	19%	7.8%
$g_{H\gamma\gamma}$	4.5%	3.2%

Higgs couplings from fast sim

- Similar fit to couplings, but from results of fast simulation
- kappa-0 framework: Higgs width excluded from fit of couplings

$$u_i = \frac{\sigma_i \cdot \mathrm{BR}_f}{\sigma_i^{\mathrm{SM}} \cdot \mathrm{BR}_f^{\mathrm{SM}}} = \frac{\kappa_i^2 \kappa_f^2}{\kappa_H^2}, \qquad \qquad \kappa_H = \sum_f \frac{\kappa_f^2 \Gamma_f^{SM}}{\Gamma_H^{SM}}$$

 Currently a fast sim study of Γ_H with only a high energy (multi-TeV) muon collider has not been done yet

Fast	t sim	Full	sim
κ_W	0.55	g_{HZZ} g_{HWW}	$8.2\%\ 0.9\%$
$\kappa_Z onumber \kappa_\gamma$	3.2	$g_{Hbb} \ g_{H\mu\mu}$	$0.8\% \\ 19\%$
κ_b	0.97	$g_{H\gamma\gamma}$	4.5%
κ_{μ}	20		

Results overview

	Full sim		Fasts	Fast sim	
	H->WW	2.9%	H->WW	1.7%	
	H->ZZ	17%	H->ZZ	11%	
Cross	H->bb	0.75%	H->bb	0.76%	
sections —	→ H->μμ	38%	H->µµ	40%	
resolution	Η->γγ	8.9%	Η->γγ	6.1%	
	HH->4b	30%			
	g _{HWW}	0.9%	g _{HWW}	0.55%	
Couplings	g _{H77}	8.2%	8 _{H77}	5.1%	
resolution	► g _{Hbb}	0.8%	g _{Hbb}	0.97%	
resolution	g _{Huu}	19%	g _{Huu}	20%	
	g _{Hγγ}	4.5%	g _{Hγγ}	3.2%	
	λ_3	20%	λ ₃ (95% CL)	25%	

Next steps

- Indirect measurement of Higgs width from measurement of off-shell H->ZZ and H->WW
- The use of the off-shell signal alone allows to disentangle the degeneracy between couplings and width
- Approach:
 - Simulate background + off-shell Higgs in the high invariant mass region with different hypothesis of g_{HZZ} and g_{HWW}
 - Determine resolution on off-shell couplings, in both channels, from a likelihood scan
 - Resolution on Higgs width can be obtained later from Δg_{H77} and Δg_{HWW}

Summary

- Analyzed results for 5 Higgs decay channels, comparing full sim and fast sim
- Similar results in the two cases
 - Better resolution in H->ZZ and H->WW with fast sim, also because both electronic and muonic decay channels were used (unlike full sim)
- Determined resolutions on Higgs couplings, assuming for the moment $\Gamma_{H} = \Gamma_{H}^{SM}$
- Presented also measurements of HH->4b and trilinear coupling
- Need for a measurement of $\Gamma_{\rm H}$ with off-shell Higgs decays to vector bosons
- Only some Higgs decay channels studied up to now->add further channels (e.g. H->TT)

Fast sim performance

