

Tracking the magnetic field in the Fermilab Muon g-2 experiment

René Reimann for the Muon g-2 collaboration

ICHEP 2022, Bologna

Jun 7^{th} , 2022

Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Measurement principle

Superconducting storage ring magnet

•
$$p_{\mu}^{magic} = 3.094 \frac{GeV}{c} \pm 0.5\%$$

- 3 cryostats with 4 superconducting coils (5300 A)
- 1.45 T vertical magnetic field
- 90 mm muon storage region
- 180 mm gap for vacuum chambers

Trolley System

- 17 NMR probes
- Measures spatial field distribution in storage region
- Pulled through ring every ~3 days

Spatial distribution of field

Trolley measures spatial distribution, but can not measure while muon beam

Fixed Probe System

- 72 azimuthal location (stations)
- allows to extract 4 to 5 multipole moments
- tracks field drift 24/7
- measures field differences

Trolley Footprint Removal

Phys. Rev. A 103, 042208 (2021)

- trolley electronics disturbs field (footprint)
- veto measurements
- interpolate from neighboring probes

drifts in higher order moments lead to tracking offset

drifts in higher order moments lead to tracking offset

Tracking Uncertainty

- Fixed Probe drift: Random walk
- End point known: Brownian bridge model

- improved position determination
- continues azimuthal treatment (virtual trolley, Fourier method)
- improved trolley footprint removal
- more trolley runs
- improved field stability by temperature regulation

Trolley Probe Calibration

- Absolute calibrated water probe
- Cross-calibrated at Argonne National Lab test magnet

- Probe can be placed in ring by 3D translation stage
- Swap trolley and calibration probe to get calibration constant
- Derive calibration constants for each trolley probe

- Study of temperature effects
- Calibration twice a year with automated procedure
- Consistent results

Kicker transient magnetic field

Kicker used to place beam on storage orbit Kicker pulse induces 22mT field in radial direction Measurement based on optical faraday rotation

- Reduced uncertainties due to vibration mitigation
- Second independent magnetometer ready to go

Beam related magnetic field transients

Pulsing electrostatic quadrupoles for beam confinement leads to magnetic field transient.

Only measured after run 2 \rightarrow conservative estimates

Full mapping of ring between run 4 and run 5

Beam related magnetic field transients

Pulsing electrostatic quadrupoles for beam confinement leads to magnetic field transient.

Only measured after run 2 \rightarrow conservative estimates

Full mapping of ring between run 4 and run 5

Improved

understanding

19

Muon weighted average magnetic field

Using tracker profiles and beam dynamics simulation

- Better placement of beam, due to replacing broken resistors
- Better placement of beam, due to stronger kick
- CBO reduction due to quad RF (run 5)

Summary

- First time a three-way comparison of a_{μ} is possible, very exciting

 $a_{\mu} = \frac{\omega_{a}}{\tilde{\omega}_{p}'} \cdot \frac{\mu_{p}'}{\mu_{e}(\mathbf{H})} \frac{\mu_{e}(\mathbf{H})}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}$ $\frac{\omega_{a}}{\tilde{\omega}_{p}'} = \frac{f_{\text{clock}} \omega_{a}^{\text{meas}} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle M(x, y, \phi) \omega_{p}'(x, y, \phi) \right\rangle \left(1 + B_{k} + B_{q}\right)}$

- Run 2 / 3 analysis on-going
- Magnetic field tracked by trolley system (spatial distribution) and fixed probe system (drift)
- Probes are calibrated with absolute calibrated water probe twice a year
- Detailed measurement campagnes to measure transient magnetic fields from kickers and quads
- Improvements in running conditions (temperature stability), data processing (position reconstruction) and analysis

Exciting times ahead!

Thank you

Backup

Magnetic Field Analysis Overview

Uncertainty budget

- Technical Design Report goal
 - Total uncertainty 140 ppb
 - Total systematic uncertainty 100 ppb
 - Magnetic field uncertainty 70 ppb
- Dominant magnetic field uncertainty due to transient fields from quadrupole and kicker operations
 - Conservative estimate for run 1
 - Detailed investigation ongoing
- Reduce tracking uncertainty to achieve overall goal

Run 1 uncertainties

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical) ω_a^m (systematic)		434 56
C_e C_p C_{ml} C_{ma}	489 180 -11 -158	53 13 5 75
$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$ B_k B_q		56 37 92
$\mu_p'(34.7^\circ)/\mu_e$ m_μ/m_e $g_e/2$		10 22 0
Total systematic Total fundamental factors Totals	 544	157 25 462

Hall temperature changes

caused field changes

See diurnal field variation

Influences magnetic field systematic

Magnet insulation

Magnet insulation

See diurnal field variation

Influences magnetic field systematic

Improved operating conditions

Magnetic field stability

Run 1 Result

- Muon g-2 collaboration published Run 1 resul B. Abi *et al.* (Muon g-2 Collaboration) Phys. Rev. Lett. **126**, 141801, 20
- Uncertainty in theory calculation dominated b calculation of hadronic vacuum polarization

- **Dispersive approach, 4.2σ tension** T. Aoyama *et al.*, Phys. Rept. **887** (2020) 1-166
- Lattice QCD approach , 1.50 tension Borsányi *et al.*, Nature **593**, 51–55, 2021 and arXiv:2002.12347

Magnetic Storage Ring

In order to measure to the required precision:

- Keep the field as **uniform** as possible
 - passive & active shimming
- Keep the field as **stable** as possible
 - power supply feedback & temperature stabilization
- Measure the field experienced by the muons
- Track **drifts** during the times when muons are present
- **Calibrate** the field measurements with a wellunderstood measurement standard

