

# Summary of physics results with detector full simulation

Speaker: Laura Buonincontri 21 June 2023

1



#### Outlook

- Higgs physics full simulation studies
  - $\circ$  ~ Results at 3 TeV on  $\sigma$  x BR and trilinear
  - State of the art of Higgs width measurements
  - $\circ$  Fit to  $\sigma$  x BR measurements, uncertainty on couplings
- Beyond the standard model full simulation studies
  - Search for Wino and higgsino dark matter with disappearing tracks
  - Study of dark-SUSY
  - Search for the associated production of a dark photon (DP) or an axion-like particle (ALP)

- Full simulation studies include BIB, unless otherwise specified
  - BIB events simulated for 1.5 TeV Muon Collider
  - $\circ$  Conservative approach: BIB is expected to be more forward at higher E<sub>CM</sub>
  - $\circ$  3 TeV BIB preliminary studies show that it's not worse than the 1.5 TeV one

#### Full simulation at a 3 TeV Muon Collider Detector

#### Challenging events reconstruction in the presence of the BIB\*:

- Nozzles are fundamental to mitigate BIB, but also reduce acceptance
- High hits multiplicity in <u>tracking system</u> due to BIB particles
- Diffused BIB background in the <u>calorimeters</u>:
- **Fake secondary vertices** (SV) due to BIB, that affects <u>flavour tagging</u>
- High multiplicity of hits in the forward regions of the <u>muon chambers</u>

- $\rightarrow$  Loss of tracking, jets, photon, electron, muons reconstruction efficiency in the forward region and low  $p_{\tau}$
- → BIB produces **fake tracks**, **fake jets and fake SV** that have to be removed in the analysis
- → BIB worsen energy resolution

\*See C. Aimè's talk: https://indico.cern.ch/event/1250075/contributions/5349959/



# Higgs physics studies

### Higgs at a muon collider

σ [fb]

0.001

- At multi-TeV energy, Higgs mainly produced by Vector Boson Fusion (VBF)
- 1 ab<sup>-1</sup> @ 3 TeV Muon Collider considered in this presentation
- ~500k events expected with 1  $ab^{-1}$  @ 3 TeV



# Measurement of $\sigma_H \times BR(H \rightarrow b\bar{b})$

- Signal:  $\mu^+\mu^- \rightarrow (H \rightarrow bb) + X$  and background  $\mu^+\mu^- \rightarrow qq + X$  (q=b,c) generated with Whizard+Pythia8
  - $\circ$  background mainly from Z→bb and Z→cc
- Preliminary cuts to remove fake jets in the analysis
- Two jets with a Secondary Vertex tag are required.
  - Background from light jets considered negligible
- Events selection:
  - $\circ$  both final state jets are required to be tagged
  - |η<sup>jet</sup>|<2.5
  - $\circ$  p<sub>T</sub><sup>jet</sup> > 40 GeV
- S= 59 500, B=65 400 in 1 ab<sup>-1</sup>
- Signal yield from template fit to pseudo-experiments invariant mass
- Statistical relative uncertainty on

σ x BR = 0.75%



L. Sestini

## Measurement of $\sigma_{H}$ × BR(H->WW\*)

- Events selection:
  - preliminary cuts to remove fake jets in the analysis
  - $\circ$  at least two jets in final state with  $p_{_{T}}^{_{jet}} > 20$  GeV and  $|\eta^{_{jet}}| < \! 2.5$
  - at least one muon in final state with  $p_{T}^{\mu}$ > 10 GeV and 10°< $\Theta^{\mu}$ <170°
- Signal and backgrounds (with and without Higgs) simulated with Whizard+Pythia8
- Cuts on two BDTs to select signal vs backgrounds
- S=2430, B=2600 in 1 ab <sup>-1</sup>

| Event                                                                                                                           | Expected Events                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $\mu^+\mu^- \to H + X \to WW^* + X \to qq\mu\nu + X$                                                                            | 2430 ± 150                                                                                    |
| $\mu^+\mu^-  ightarrow qq\mu u \ \mu^+\mu^-  ightarrow qqll \ \mu^+\mu^-  ightarrow qq u u$                                     | $ \begin{vmatrix} 2600 \pm 1300 \\ < 100 \ C.L. = 68\% \\ < 100 \ C.L. = 68\% \end{vmatrix} $ |
| $ \begin{array}{c} \mu^+\mu^- \to H \to WW^* \to qqqq \\ \mu^+\mu^- \to H \to bb \\ \mu^+\mu^- \to H \to \tau\tau \end{array} $ | $ \begin{vmatrix} <10 \ C.L. = 68\% \\ <150 \ C.L. = 68\% \\ <4 \ C.L. = 68\% \end{vmatrix} $ |











7

# Measurement of $\sigma_{H} \times BR(H \rightarrow \mu^{+}\mu^{-})$

https://doi.org/10.22323/1.398.0579 (\*)https://indico.cern.ch/event/12835 32/

- Event selection requirements:
  - Two opposite charge muons with  $p_{T}^{\mu} > 5 \text{ GeV}$
  - $10^{\circ} < \theta_{\parallel} < 170^{\circ}$  to reject fake hits from BIB
- 26 signal and 1100 background events are expected with L=1.0 ab<sup>-1</sup>
- Selection cuts on two BDTs trained to discriminate signal from the backgrounds
- The statistical uncertainty on σ(μμ→H)•BR(H→μ<sup>+</sup>μ<sup>-</sup>) is obtained with a fit to the invariant mass: 38% at 3 TeV with L=1.0 ab<sup>-1</sup>



• Analysis performed without BIB, but BIB effects are negligible (\*)

# Measurement of $\sigma_{\mu} \times BR(H \rightarrow \gamma \gamma)$

- Signal and backgrounds generated with MG5+Pythia8
- Preliminary result: No BIB at the moment
- Event selection requirements:

0.3

0.25

0.15

0.1

0.05

-0.4

-0.3

-0.2

-0.1

0

0.1

Normalised events

Two photons in acceptance with  $p_{\tau}^{\gamma} > 10$  GeV and  $E^{\gamma} > 15$  GeV Ο

0.2

BDT response

- Most energetic photon with  $p_{\tau}^{\gamma} > 40 \text{ GeV}$ Ο
- Used a BDT to perform signal vs. background separation
- Cut on BDT output to maximize  $S/\sqrt{(S+B)}$



500

1000

1500

2000

0

| Process                                     | $\sigma$ (fb)       | Events |
|---------------------------------------------|---------------------|--------|
| $\mu\mu \to H \nu \nu, H \to \gamma \gamma$ | $0.9025 \pm 0.0026$ | 707    |
| $\mu\mu  ightarrow  u  u \gamma \gamma$     | 81.98 ± 0.27        | 30168  |
| $\mu\mu  ightarrow ll\gamma\gamma$          | $4.419 \pm 0.016$   | 2678   |
| $\mu\mu  ightarrow ll\gamma$                | $159.0 \pm 0.6$     | 4738   |
| $\mu\mu 	o \gamma\gamma$                    | $60.15 \pm 0.03$    | 59933  |

2500

3000

M<sub>vv</sub> [GeV]

3500

D. Zuliani

# Measurement of $\sigma_H \times BR(H \rightarrow ZZ)$

- Events selection:
  - preliminary cuts to remove fake jets in the analysis
  - at least two jets candidates with  $p_{\tau}^{jet} > 15 \text{ GeV}$
  - at least two muons candidates with  $p_{\tau}^{\mu} > 10$  GeV outside the jets cone
- Signal generated with MG5+Pythia8, while inclusive  $\mu^+ \mu^- \rightarrow VV\mu^+ \mu^- jj$  background (excluding signal) is generated with Whizard+Pythia8
- BDT used to classify signal vs background
- Resolution obtained with cut-based approach and with fit of BDTs, giving the same result



L. Mareso in https://indico.cern.ch/event /1197844/



10

#### $\mu^+\mu^- \rightarrow HHv\bar{v} \rightarrow b\bar{b}b\bar{b}v\bar{v}at 3 \text{ TeV}$

- Simulation performed without BIB:
  - b-tagging efficiency in the presence of BIB is used to weight events
  - Full simulation with BIB ongoing
- Event selection requirements:
  - $\circ$  N<sub>iets</sub> >3 with p<sub>T</sub> > 20 GeV
  - Jets paired by minimizing the figure of merit  $M = \sqrt{(m_{ij} m_H)^2 + (m_{kl} m_H)^2}$
- With L= 1 ab<sup>-1</sup> at 3 TeV we expect to select 50 HH events and 432 background events
- BDT trained for signal vs background discrimination
- With a fit to the BDT an uncertainty of ~ 30% on  $\sigma(\mu^+\mu^- \rightarrow HH\nu\nu)$  •**BR(HH** $\rightarrow$ **bbbb)** has been obtained

| Signal                                       | Cross section [fb] |
|----------------------------------------------|--------------------|
| $\mu^+\mu^-  ightarrow HH  u ar{ u}$         | 0.8                |
| Physics background                           | Cross section [fb] |
| $\mu^+\mu^-  ightarrow bar{b}bar{b} uar{ u}$ | 3.3                |
| $\mu^+\mu^-  ightarrow bar{b}H uar{ u}$      | 1.7                |
| (signal included)                            |                    |



#### Trilinear coupling uncertainty

- Generation with WHIZARD and simulation of HH events just with the process mediated by the trilinear coupling
- The kinematic of the HH process is also used to separate the total HH from the HH trilinear-only contribution.





#### Trilinear coupling uncertainty

- Two Multi Layer Perceptrons (MLP) discriminators are trained to separate:
  - HH from trilinear vertex vs total HH
  - total HH vs 4b background



- Set of signal samples generated for different  $\kappa = \lambda_3 / \lambda_{SM}$  hypothesis
- Statistical uncertainty on  $\lambda_3$  of about 20% at 3 TeV and 1.0 ab<sup>-1</sup> (at 68% CL) obtained with a likelihood scan

λ3

Collider @ 3 TeV 2.9% 17% 0.75% 38% 8.9% 30%

20%

## Comparison with CLIC

| Measurement                                                                                                      | Statistical precision           |                               | Measurement                                                                                                                      | Statistical precision             |                    |
|------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|
|                                                                                                                  | 1.4 TeV<br>1.5 ab <sup>-1</sup> | 3 TeV<br>2.0 ab <sup>-1</sup> |                                                                                                                                  | 350 GeV<br>500 fb <sup>-1</sup>   | Muon               |
| -(11                                                                                                             | 0.40                            | 0.20                          | $\sigma(\text{ZH}) \times BR(\text{H} \rightarrow \text{b}\bar{\text{b}})$                                                       | 0.86%                             | 1 ab <sup>-1</sup> |
| $\sigma(\mathrm{Hu}_{\mathrm{H}}) \times BR(\mathrm{H} \to \mathrm{bb})$                                         | 0.4%                            | 0.5%                          | $\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{WW}^*)$                                                                    | 5.1%                              | H->WW              |
| $\sigma(\mathrm{Hu}_{\mathrm{e}}\mathrm{u}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{\mu}^+\mathrm{\mu}^-)$ | 38%                             | 25%                           | $\pi(\mathbf{H}_{\mathbf{H}}, \bar{\mathbf{u}}) \sim \mathbf{P} \mathbf{P}(\mathbf{H}_{\mathbf{H}}, \mathbf{h}\bar{\mathbf{h}})$ | 1.00%                             | H->77              |
| $\sigma(\mathrm{H} u_{\mathrm{e}} \bar{u}_{\mathrm{e}}) \times BR(\mathrm{H} \to \gamma \gamma)$                 | 15%                             | $10\%^{*}$                    | $O(\Pi \oplus \oplus) \times BR(\Pi \to 00)$                                                                                     | 1.970                             |                    |
| $\sigma(\mathrm{Hu}_{\mathrm{t}}\tilde{\mathrm{u}}_{\mathrm{t}}) \times BR(\mathrm{H} \to \mathrm{WW}^*)$        | 1.0%                            | 0.7%*                         | $\Delta[\sigma(\mathrm{HHu}_{\bar{\mathrm{u}}})]$ 140 + 14T                                                                      | N 200 ATTN                        |                    |
| $\sigma(Hu,\bar{u}) \times BR(H \rightarrow 77^*)$                                                               | 5 6%                            | 3.9%*                         | $\sigma(HH \mu \bar{\mu}) = 44\% \text{ at } 1.4 \text{ f}$                                                                      | ev, 20% at 3 lev                  | H->hh              |
|                                                                                                                  | 5.670                           | 5.5 %                         | - (                                                                                                                              |                                   | H->γγ              |
|                                                                                                                  |                                 |                               | $\Delta\lambda/\lambda$ [-8%.+11%] at 68%                                                                                        | 6 CL with 5 ab <sup>-1 (**)</sup> | HH->4b             |

Differences:

- $H \rightarrow bb$  from combined measurement of hadronic Higgs decays
- $H \rightarrow ZZ^*$  with llqq final state, and  $I = \{e, \mu, T\}$
- $H \rightarrow WW^*$  with qqqq and Vqq final state, and  $I = \{e, \mu\}$
- The measurement of Higgs width  $\Gamma_{\rm H}$  is the key that allows to determine Higgs couplings from measurements of  $\sigma$  x BR

 $\sigma(\mu^+\mu^- \to H\nu_\mu\bar{\nu}_\mu) \times BR(H \to xx) \propto g_{HWW}^2 g_{Hxx}^2 / \Gamma_H$ 

#### Higgs width measurement via the recoil mass method

Recoil mass method, tested for 3 TeV muon collider:

- $\Gamma_{\rm H}$  can be extracted with proper ratio of  $\sigma$  and  $\sigma \times BR$
- Higgs produced via  $\mu^+\mu^- \rightarrow H\mu^+\mu^-$  (ZBF+Higgsstrahlung)



• The H peak is reconstructed as the recoil mass distribution:

 $M_{H}^{2} = E_{CM}^{2} + M_{\mu\mu}^{2} - 2E_{\mu\mu} \cdot E_{CM}$ 

- S =345.8, B = 25554, S/sqrt(S+B) = 2.2
- When  $\rm E_{CM}$  is increased,  $\rm M_{\mu\mu}$  and  $\rm E_{\mu\mu}$  grow, difference between large terms
- Poor energy resolution in the forward region
- Should get worse at higher energies

$$\begin{array}{c} \mbox{Processes} \\ \sigma(\mu^+\mu^- \to \mu^+\mu^- H) \propto g_{HZZ}^2 \\ \\ \sigma(\mu^+\mu^- \to \nu\nu H) \times BR(H \to WW) \propto \frac{g_{HWW}^4}{\Gamma_H} \\ \\ \sigma(\mu^+\mu^- \to \nu\nu H) \times BR(H \to ZZ) \propto \frac{g_{HWW}^2 g_{HZZ}^2}{\Gamma_H} \end{array}$$

$$\frac{\left(\sigma(\mu^+\mu^- \to \nu\nu H) \times BR(H \to WW)\right) \times \left(\sigma(\mu^+\mu^- \to \mu^+\mu^- H)\right)^2}{\left(\sigma(\mu^+\mu^- \to \nu\nu H) \times BR(H \to ZZ)\right)^2} \propto \Gamma_H$$



15

L. Giambastiani: https://indico.cern.ch/event/1103957/

### Indirect measurement of the Higgs width

- Indirect measurement of Higgs width similar to the one used by LHC
- Consider WBF and ZBF processes  $\mu\mu \rightarrow VV+X$  (V=W,Z)
- Include diagrams sensitive to the couplings of the Higgs to vector bosons (H is off-shell)
- These processes are generated with Monte Carlo for different hypothesis of a coupling modifier introduced on  $g_{HZZ}$  and  $g_{HWWW}$
- The resolution on the coupling modifier (*k*) can be obtained with a likelihood scan
- The resolution on the Higgs width can be determined knowing the resolution on k and on the on-shell cross section (shown before)



$$\sigma^{on-shell}(W^+W^- \to H \to ZZ) \propto \frac{k^4}{\Gamma_H/\Gamma_H^{SM}} \\ k = \frac{g_{HVV}}{g_{HVV}^{SM}}$$

Study performed via fast simulation considering all possible final states: 4j, l<sup>±</sup> v<sub>e</sub> jj and l<sup>+</sup>l<sup>-</sup> jj (see M. Forslund and P. Meade\*)

$$\Delta\Gamma=4.0\%$$
 at 10 TeV

$$\Delta\Gamma=58\%$$
 at 3 TeV

\*https://indico.fnal.gov/event/56615/contributions/25503 5/attachments/162410/214663/MC\_HPrec\_ForTalk.pdf

L. Giambastiani

## Higgs couplings from full sim

- Previous measurements of  $\sigma$  x BR combined to extract couplings assuming  $\Gamma_{\mu} = \Gamma_{\mu}^{SM}$
- Results compared with CLIC [Eur. Phys. J. C 77, 475 (2017)]
  - $\circ$  CLIC fitted also  $\Gamma_{\rm H}$
  - CLIC used multiple energy stages and larger integrated luminosity
  - CLIC: 25 years program
  - Muon Collider: 5 years 3 TeV stage

|                     | Muon Collider                         | CLIC                                                                                                                                                                                 |
|---------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | $(\mathrm{SM}\Gamma_H)$               |                                                                                                                                                                                      |
|                     | $1~\mathrm{ab^{-1}}~@~3~\mathrm{TeV}$ | $\begin{array}{c} 0.5 \ \mathrm{ab}^{-1} \ @ \ 350 \ \mathrm{GeV} + \\ 1.5 \ \mathrm{ab}^{-1} \ @ \ 1.4 \ \mathrm{TeV} + \\ 2 \ \mathrm{ab}^{-1} \ @ \ 3 \ \mathrm{TeV} \end{array}$ |
| $\Gamma_H$          | SM                                    | 3.5%                                                                                                                                                                                 |
| $g_{HZZ}$           | 7.9%                                  | 0.8%                                                                                                                                                                                 |
| $g_{HWW}$           | 0.8%                                  | 0.9%                                                                                                                                                                                 |
| $g_{Hbb}$           | 0.8%                                  | 0.9%                                                                                                                                                                                 |
| $g_{H\mu\mu}$       | 19.0%                                 | 7.8%                                                                                                                                                                                 |
| $g_{H\gamma\gamma}$ | 4.2%                                  | 3.2%                                                                                                                                                                                 |



# Beyond the Standard Model searches

#### Wino and higgsino dark matter with disappearing tracks

- Signal (MG5+ Pythia): pairs of charged LLPs (chargino) with decay lengths < 1 m, at  $\sqrt{s}$  = 3 TeV (1 ab<sup>-1</sup>) and  $\sqrt{s}$  = 10 TeV (10 ab<sup>-1</sup>)
  - track with no hits in outermost layers of the tracking system
  - $\circ$  no energy deposits in calorimeters or muon system associated to it
- Background:
  - BIB: disappearing tracks from fake hits combination, fully simulated
  - SM: most significant is  $\mu^+\mu^- \rightarrow VV$
- Average number of fake tracks due to BIB ~ 0.08/event exploiting double layer layout and quality requirements on tracks
- Efficiency on signal disappearing tracks: 90% in the central region
- Two signal regions, based on tracklet multiplicity

| Requirement / Region                  | $\mathrm{SR}_{1t}^\gamma$ | $\mathrm{SR}_{2t}^\gamma$ |
|---------------------------------------|---------------------------|---------------------------|
| Vetoes                                | leptons and jets          |                           |
| Leading tracklet $p_{\rm T}$ [GeV]    | > 300                     | > 20                      |
| Leading tracklet $\theta$ [rad]       | $[2/9\pi,7/9\pi]$         |                           |
| Subleading tracklet $p_{\rm T}$ [GeV] | -                         | > 10                      |
| Tracklet pair $\Delta z$ [mm]         | -                         | < 0.1                     |
| Photon energy [GeV]                   | > 25                      | > 25                      |



## Study of dark-SUSY at 3 TeV

- Signal generated with MG5
- A MSSM lightest neutralino decays in two dark photons through a dark Higgs boson (8 final state muons)
- Events full simulated without BIB and selected:
  - 8 muons in the final state
  - muons paired by requiring a minimum difference between the reconstructed dark photon and dark Higgs masses
- 8 muons background found to be negligible
- 8 muons + 2 neutrinos background not possible to generate



#### C. Aimè https://doi.org/10.22 323/1.398.0644



#### Signal yield for 1 ab<sup>-1</sup>



Reconstruction efficiency of processes with n-muons in final state with BIB to be determined! 20

#### Monochromatic single photon events

- Search for the associated production of a dark photon (DP) or an axion-like particle (ALP) with a photon at  $\sqrt{s} = 3$  TeV (1 ab<sup>-1</sup>) and  $\sqrt{s} = 10$  TeV (10 ab<sup>-1</sup>)
- Signals and background generated with MG5+Pythia
- At high energies the production cross sections depend on a single effective energy scale:  $\sigma \propto 1/\Lambda^2$
- Experimental signature is a single monochromatic photon
- Background  $\mu^+\mu^- \rightarrow \gamma V V$
- Events full simulated without BIB, but high energy single photon is required:
  - $E_v > 1450 \text{ GeV}$  and  $40^\circ < \theta_v < 140^\circ$  for 3 TeV
  - $E_v' > 4800 \text{ GeV}$  and  $40^\circ < \theta_v' < 140^\circ$  for 10 TeV





#### https://doi.org/10.1103/ PhysRevD.105.075008



21



# Conclusions and final considerations

#### Conclusions and next steps

- This talk shows many physics studies, both for Standard Model and Beyond the Standard Model
- Many Higgs physics studies can be improved:
  - Electronic and muonic decay channels (i. e.  $H \rightarrow ZZ$  and  $H \rightarrow WW$ )
  - Forward detectors to tag ZBF production
- Some Higgs decay channel are still to be studied, like  $H \rightarrow TT$
- Others need further studies, like  $H \rightarrow cc$ :
  - b- and c-jets have a different internal structure due to the different quarks composition
  - A Deep Neural Network to exploit the different flavour distributions inside the jets could be a promising technique\*, but more studied are needed
- Precision on ttH production at 3 and 10 TeV for the direct measurement of the top Yukawa coupling investigated via fast simulation\*
  - Large multiplicity final states (8 jets or 6 jets + 1 lepton in final state)
  - Signal precision on ttH(bb): ~ 61% at 3 TeV, ~53% at 10 TeV\*
- The Muon Collider have a great potential in studying also BSM physics
- At 3 TeV and 1 ab<sup>-1</sup> the precision on  $\Gamma_{\rm H}$  measurement is worse than the HL-LHC precision
  - expected large improvements by going to 10 TeV



# Backup