IMCC Annual Meeting

The detector seen by MDI

MASSIMO CASARSA¹, DONATELLA LUCCHESI^{2,3,4}, LORENZO SESTINI³, **DAVIDE ZULIANI^{2,3,*}**

¹INFN TRIESTE, ²UNIVERSITÀ DI PADOVA, ³INFN PADOVA, ⁴CERN

IJCLAB, ORSAY - 21/06/2023

*DAVIDE.ZULIANI@CERN.CH

Introduction

- So far, the detector and MDI have been optimised for 3 TeV signal and 1.5 TeV BIB
- from MDI point of view
- - Unfortunately, no solutions yet but everything **WIP**

Status of the IR optics design for the 10 TeV Muon Col

Salle 101 - B. 200 - IJCLab Orsay

Status of the background and forward muon studies

Salle 101 - B. 200 - IJCLab Orsay

Studies at 3 TeV

Salle 101 - B. 200 - IJCLab Orsay

The detector seen by MDI

Salle 101 - B. 200 - IJCLab Orsay

Round-table discussion on MDI studies

Salle 101 - B. 200 - IJCLab Orsay

Get ready for discussion!

DAVIDE ZULIANI

SLIDES BY C. AIM

SLIDES BY L. BUONINCONTRI

When going to 3/10 TeV or more, we need to understand what the detector requirements are

This talk presents "problems" and open questions, which should prompt fruitful discussions

Kyriacos Skoufaris
10:30 - 10:50
Daniele Calzolari
10:50 - 11:20
Dr Francesco Collamati et al.
11:20 - 11:50
Davide Zuliani
11:50 - 12:10
12:10 - 12:30

Detector and MD

- Standard detector structure from CLIC
- Good $p_{\rm T}$ (tracker) and energy (calorimeters) Nozzles to mitigate BIB resolution

DAVIDE ZULIANI

TOWARDS A MUON COLLIDER

Studied with FLUKA+LineBuilder

Size of the beam-pipe

- Mainly driven by the **size** of the **beam** at the interaction point
- It defines the **position** of the **first vertex layer**
 - Fundamental to achieve good performance for tracks' impact parameter
- Some rough numbers for typical beam-pipe radii:

	Beam-pipe size	First VXD layer
LEP	50 mm	~60 mm
LHC	29 mm	~40/50 mm
CLD/FCCee	15 mm	17.5 mm
Muon Collider (v1)	22.8 mm	30 mm

Size of the beam-pipe

- - Possibility to quickly change: '

DAVIDE ZULIANI

• A quick study has been performed using a **parametric simulation** of the **tracking system**

Position of tracker and vertex layers Materials, layers thickness, sensitivity Magnetic field

Size of the beam-pipe

- - Possibility to quickly change:

DAVIDE ZULIANI

• A quick study has been performed using a **parametric simulation** of the **tracking system**

- Position of tracker and vertex layers
 - Materials, layers thickness, sensitivity
 - Magnetic field

Knowledge of PV position

- Fundamental to distinguish PV from SV (e.g. to have high-performance flavour tagging)
- Harder at lepton colliders wrt hadron colliders (fewer tracks to use for fitting)
 - e.g. LEP2 used the LEP **Beam Orbit Measurement**
 - Necessary to monitor position of beam focusing magnets closest to the interaction region

Is it possible to do something similar here?

BEAM SPOT MEASUREMENT AT LEP

DAVIDE ZULIANI

Nozzles dimensions

- Indeed, going to 10 TeV the acceptance of some physics processes might change
 - e.g.: $\mu^+\mu^- \rightarrow H(\rightarrow bb)\nu_\mu\bar{\nu}_\mu$ at 3 and 10 TeV

Can we use a "wider" detector acceptance to exploit the angular features of these processes?

IMCC ANNUAL MEETING

PAPER MY P. MAEDE AND M. FORSLUND

Detector dimensions

- Going to 10 TeV means that some very high-energetic processes might appear
 - Problem: dimensions of tracking system and calorimeters

EVENT DISPLAY OF $\mu\mu \rightarrow Z' \rightarrow jj$ with $m_{Z'} = 9.5 \text{ TeV}$

Is a longer detector possible? Can we increase L*?

SLIDES BY K. SKOUFARIS

Nozzles instrumentation

- Several studies showing the importance of tagging forward muons
- Two possibilities:
 - Forward detector outside the main detector
 - Difficult due to focusing scheme

- **Instrumentation** of the **nozzles**
 - Is it possible? How this affects MDI?

Conclusions

- Lots of questions and open points to discuss:
 - Size of the beam-pipe \rightarrow track and vertices reconstruction
 - Knowledge of PV position \rightarrow fundamental for tagging SV
 - Nozzle and detector dimensions \rightarrow acceptance of physics processes
 - Nozzle instrumentation \rightarrow important for forward physics
- Important effort and synergies between detector and MDI

Thank you for your attention, and let's discuss!

