

Istituto Nazionale di Fisica Nucleare

R&D towards the detector for the Muon Collider

Lorenzo Sestini INFN-Padova

On behalf of the International Muon Collider Collaboration

Introduction: Muon Collider

- The Muon Collider is the dream facility for particle physics: it is both a precision and a discovery machine
- In fact it puts together the advantages of electronpositron and hadron colliders:
 - muons are elementary particles, all beam energy available, clean events
 - muon mass is 200 times the mass of the electron, small radiation losses
- The International Muon Collider Collaboration has proposed a first stage at $\sqrt{s} = 3$ TeV to be built by the 2045
- Second stage at √s =10 TeV check talk by K. Skoufaris

Beam-induced background (BIB)

- It is produced by the decay in flight of muons in the beams, and subsequent interactions (around $3 \cdot 10^{13}$ decays/s/beam at $\sqrt{s} = 1.5$ TeV)
- All kind of particles are produced: photons, electrons, neutrons etc.
- The BIB is mitigated by the Machine Detector Interface (*e.g.* two tungsten nozzles are inserted)
- Even in this way O(100M) particles per bunch crossing arrive at the detector

Interaction region optimized for $\sqrt{s} = 1.5$ TeV https://arxiv.org/abs/2105.09116 ana 🔜 20000000 🗆 2000 Detector 13 (m) N.V. Mokhov and S.I. Striganov, Phys. Procedia 37 (2012) 2015

BIB characterization

Many BIB particles are out of time with respect to the bunch crossing: timing measurements are crucial

We have studied the $\sqrt{s} = 1.5$ TeV BIB because it was the first optimized MDI design available

New studies on 3 TeV BIB on-going

More info in the talk "<u>Machine-Detector interface</u> for multi-TeV Muon Collider" by D. Lucchesi

First detector concept

- Initially based on CLIC detector
- Designed for suppressing the 1.5 TeV BIB
- Used also for 3 TeV studies with full simulation

• Tracking system with silicon sensors

Electromagnetic calorimeter
 40 layers of tungsten+silicon pads

Hadronic calorimeter 60 layers of steel absorber + plastic scintillating tiles

Superconducting solenoid (3.57 T)

Muon system Resistive Plate Chambers (RPC) interleaved in the magnets's iron yoke

https://doi.org/10.48550/arXiv.2303.08533

Detector performance

- Reconstruction algorithm are tuned to suppress the BIB
- The presence of the BIB degrades the performance
- Detectors and reconstruction algorithms are not yet fully optimized
- However physics is already possible with this configuration, check other EPS-HEP 2023 talks:
 - "<u>Higgs physics prospects at Muon Collider with a</u> <u>detailed detector simulation</u>" by M. Casarsa
 - "Detecting disappearing tracks and other exotica at a <u>Muon Collider</u>" by F. Meloni
 - "New physics and hidden sectors at Muon Collider" by C. Aimé

Tracks and photons performance with and w/o BIB

Radiation environment

1-MeV-neq fluence for one year of operation (200 days) at 1.5 TeV Total Ionizing Dose for one year of operation (200 days) at 1.5 TeV

UON Collider

	Maximum	Dose (Mrad)	Maximum Fluence (1 MeV-neq/cm ²)		· · · · · · · · · · · · · · · · · · ·
	R=22 mm	R=1500 mm	R=22 mm	R = 1500 mm	Radiation hardness requirements are pretty
Muon Collider	10	0.1	10^{15}	10^{14}	similar to what expected at HL-LHC
HL-LHC	100	0.1	10^{15}	10^{13}	•
					7/16

//16

Baseline tracking geometry

Key features

- **Timing**: to suppress outof-time BIB hits
- Directional information: BIB does not come from the interaction point
- Energy depositions: pulse shape analysis for rejecting soft component

Higher occupancies than LHC detectors are expected but 100 kHz crossing rate (MuC with single bunch) vs 40 MHz (LHC)

Detector	Hit Density $[mm^{-2}]$				
Reference	MCD	ATLAS ITk	ALICE ITS3		
Pixel Layer 0	3.68	0.643	0.85		
Pixel Layer 1	0.51	0.022	0.51		

BIB suppression at 1.5 TeV

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mu{ m m} imes25\mu{ m m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m} imes 10\mathrm{mm}$
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu{ m m} imes 5\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$	$7\mu{ m m} imes90\mu{ m m}$

Sinergy with timing sensors development for HL-LHC

Monolithic devices (CMOS):

Good timing and spacial resolution, but radiation hardness to be improved

Promising technologies

Low Gain Avalanche Detectors (LGAD):

Large and fast signal (20-30 ps resolution), moderate radiation hardness

Hybrid small pixel devices:

No gain but fast timing (20-30 ps resolution) and good position resolution. Intrinsically radiation hard

BIB hits in the calorimeters

Occupancy in ECAL > 10 times occupancy in HCAL

Calorimeter R&D

 Flux of 300 particles per cm² $\sqrt{s} = 3$ TeV $\mu^+\mu^-$ collisions, $\sqrt{s} = 1.5$ TeV BIB overlay through the ECAL surface Fraction of ECAL hits • 96% photons and 4% neutrons Signal jets Average photon energy 1.7 MeV BIB 0.2 No time resolution effects Muon Collider **Key features** 0 1 Simulation • Timing: BIB hits are out-of-time a -0.4 -0.20.2 0.4 0 resolution in the order of 100 ps is Normalised hit time [ns] desiderable Longitudinal segmentation: $\sqrt{s} = 3$ TeV $\mu^+\mu^-$ collisions, $\sqrt{s} = 1.5$ TeV BIB overlay different profile for signal and BIB of ECAL hits Signal jets BIB · Granularity: helps in separating BIB particles from signal, avoiding **Muon Collider** overlaps in the same cell Simulation 0.02 • Energy resolution: target $\frac{\Delta E}{E} \simeq \frac{10\%}{\sqrt{E[\text{GeV}]}}$ 0.01 1700 1450 1500 1550 1600 1650 1800 Calorimeter hit distance from interaction point [mm]

Calorimeter R&D - ECAL

14%

 $/E[\overline{\text{GeV}}]$

11/16

 ΔE

E

ECAL performance in Muon Collider environment Crilin: A CRystal calorImeter with Longitudinal (1.5 TeV) determined from full simulation InformatioN for a future Muon Collider 5/<E> [%] 7Ē 6Ē • Module formed by 5 layers of PbF₂ crystals (10 x 10 x 40 mm³), CRILIN - 1.57 rad CRILIN - 1 31 rad 5E Cerenkov light detected with SiPMs 4 3 · Prototype module built and tested at Laboratori Nazionali di Frascati • Time measurement resolution better than 100 ps 50 0 100 150 E_{true} [GeV] It costs 10 time less than the baseline tungsten-silicon calorimeter **Characterization of modules** 120 -Normalised Residuals [%] in dedicated test beams 100 Journal of Instrumentation, Volume 17, September 2022 80 - CH 0 60 - CH 1 T₀=T_{peak}-10 ns 40 Res= (Q-Q___)/Q CRILIN Fraction of charge collected 20 measured in test beam 80 100 120 140 160 60 T-T₀ [ns]

Calorimeter R&D - HCAL

- 7.5 kHz/cm² photon flux is expected at the HCAL surface
- Total ionizing dose 10⁻⁵ GRad per year in HCAL
- HCAL based on **Micro Pattern Gas Detectors** (MPGDs) under investigation: high rate capability (MHz/cm2), modest time resolution (few ns) and robust against radiation
- Design studied with stand-alone Geant4 simulation

90% of pion energy contained in 14 λ_I (100 layer)

Muon System R&D

- In the Muon System BIB hits are concentrated in the endcaps
- · Some technologies like RPCs are already at the rate limit
- Requirements: good spacial resolution (100 $\mu\text{m})$ possibly sub-ns time resolution

NIM A Volume 1046, 11 January 2023, 167800

Technology comparison: probability for a BIB particle to generate a visible signal in the detector (simulation)

Neutron flux in the muon system with 1.5 TeV BIB

PicoSec MICROMEGAS detector is a valid option: time resolution better than 25 ps, very high rate capability

Towards a 10 TeV detector

 $\mu\mu \rightarrow H\nu\nu \rightarrow bb\nu\nu$

A.U. 0.08 3 TeV 10 TeV 0.07 0.06 0.05 generator-level b quarks 0.04 0.03 0.02 0.01 $\mu\mu \rightarrow Z'X \rightarrow qq/\ell\ell X$ Z -> jj 5800 Z -> [* [$M_{Z'} = 5 \text{ TeV}$ 600 500 generator-level 400 leptons and jets 300 200 2500 3000 P_T leptons/jets [GeV] 1500 2000 1000

Tracker optimization, several handles:

- Maximum distance from beam axis (R_{max})
- Magnetic field (B)
- Minimum distance from beam axis (for impact parameter resolution)

- The working point should be decided with physics requirements
- The magnetic field is limited by technological issues: a discussion with experts is necessary!

Towards a 10 TeV detector

- TeV photons are not fully contained in ECAL
- Detector dimensions limited by machine magnets
- Need to explore other solutions

5 TeV photon

- The Muon Collider environment is different from other known machines: the decay in flight of muons produces the beam-induced background
- Detectors should meet specific requirements, from radiation hardness to excellent timing resolution
- Starting from a detector concept designed for suppressing BIB at 1.5 TeV collisions, several R&D activities are on-going to improve the general performance
- The design of the 10 TeV detector is challenging, original and ground-breaking solutions should be explored
- Participation to the European Strategy and Snowmass process, integration in the ECFA Detector R&D roadmap. MuCol project funded by the EU. Small group of people, more personpower needed!