Measurement of the Muon Magnetic Anomaly to

0.20 ppm by the Muon g - 2 experiment at Fermilab

LORENZO COTROZZI ON BEHALF OF THE MUON *g* – 2 COLLABORATION UNIVERSITY OF PISA, INFN PISA

17TH INTERNATIONAL WORKSHOP ON TAU LEPTON PHYSICS LOUISVILLE, KY – 12/05/2023

FERMILAB-SLIDES-23-397-V

The anomalous magnetic moment

 \vec{B}

- Particle with spin in a magnetic B-field: $\vec{\mu} \equiv g \frac{e}{2m} \vec{S}$
- Torque in B-field: $\tau = \vec{\mu} \times \vec{B}$ Energy in B-field: $U = -\vec{\mu} \cdot \vec{B}$
- Classical mechanics prediction: g = 1
- Dirac's prediction for spin-1/2 elementary particles: g = 2
- Radiative corrections in Quantum Field Theories: $g \neq 2$
- Kusch and Foley's measurement, Schwinger's prediction (1948, electron $g_e 2$):

$$\frac{g_e - 2}{2} \equiv a_e \approx 0.00116 \qquad \qquad 1^{\text{st}} \text{ order universal QED term:} \frac{\alpha}{2\pi}$$

Outline

Theory Initiative White Paper 2020

Run-2/3 upgrades and 2023 results

2021 Run-1 results at Fermilab

Puzzles, prospects and outlook

Muon g - 2 before 2021

- Previous experiment at BNL (early 2000s): discrepancy between 0.54 ppm experimental uncertainty and 0.55 ppm theoretical uncertainty
 (1 ppm = part per million)
- Muon g 2 Theory Initiative: recommended theoretical value in 2020, White Paper (WP2020) T. Aoyama et al, Phys. Rept. 887 (2020)
- HVP in WP2020 based on $e^+e^$ hadronic cross section data
- 3.7 σ discrepancy between BNL and WP2020 prediction: $a_{\mu}^{BNL} - a_{\mu}^{WP2020} = 279(76) \times 10^{-11}$

Dispersive method (e^+e^-) for HVP

had

- Optical theorem: $\operatorname{Im} \overset{\gamma}{\longrightarrow} \operatorname{had} \overset{\gamma}{\longrightarrow} \Leftrightarrow \left| \overset{\gamma}{\longrightarrow} \right|$
- R(s) is data-driven hadronic R-Ratio

- $a_{\mu}^{HVP-LO} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s)$
 - See talk today by K. Maltman
- 20+ years of e^+e^- experiments: CMD-2, SND, KLOE, BaBar, BESIII, CLEO-C included in WP2020

Lattice QCD method for HVP

- Ab-initio calculation of HVP from first principles, approximation of discrete space-time
- After WP2020: BMW collaboration published first sub-percent uncertainty
- See talk on Friday by S. Kuberski

LORENZO COTROZZ

12/05/2023 - TAU2023 - MUON g - 2

Muon *g* – 2 result in 2021 (Run-1, 2018 data)

LORENZO COTROZZ

Fermilab accelerator complex: muon beam

LORENZO COTROZZ

- 8 GeV protons collide on target and produce pions
- Pions decay into muons along ~ 2 km in Delivery Ring
- Muons are injected in 7 m radius ring

Anomalous precession in B-field

 $\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c \neq 0$: spin precesses with respect to momentum

$$\vec{\omega}_{a} = -\frac{e}{mc} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \frac{\gamma}{\gamma + 1} \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right]$$

$$\vec{E} \text{ from electrostatic quadrupoles}$$
Relativistic boost of $\gamma = 29.3$
3.1 GeV/c «magic momentum»
Red term is cancelled

$$\vec{\omega}_{a} = -\frac{e}{mc} a_{\mu}\vec{B}$$

• \vec{E}

12/05/2023 - TAU2023 - MUON g - 2

Principle of ω_a measurement

- Electron energy spectrum in Lab frame $\begin{array}{c}
 \alpha = 0^{\circ} \\
 \alpha = 90^{\circ} \\
 \alpha = 60^{\circ} \\
 \alpha = 60^{\circ} \\
 \end{array}$
- Weak decay violates parity
- e⁺ spectrum depends on ω_a phase
- 3. Count high-energy e^+ over time (muons have lifetime of ~ 64µs, we measure for 700µs)

ω_a analysis in a nutshell

LORENZO COTROZZ

12/05/2023 - TAU2023 - MUON g - 2

ω_p (field) analysis in a nutshell

Run-2/3 Result: FNAL + BNL Combination

LORENZO COTROZZ

12/05/2023 - TAU2023 - MUON g - 2

Run-2/3 hardware improvements

 Fixed 2 out of 32 quadrupole resistors that strongly affected beam dynamics

Added thermal blanket to ring

• Replaced kicker cables for optimal kick

Coherent Betatron Oscillations (CBO)

CBO systematics: more studies

More statistics →more models tested →reduced systematic

From Run-1 to Run-2/3: fixed bad resistors + Stronger kick →more stable beam dynamics

> CBO dominated Run-1 systematics (38 ppb). Now reduced to 21 ppb!

LORENZO COTROZ

Improvement of statistical uncertainty

On 27 February 2023: proposal Goal of x21 BNL datasets!

Updates since WP2020

Disclaimer from A. Keshavarzi's Lattice 2023 talk:

IMPORTANT: THIS PLOT IS VERY ROUGH!

- TI White Paper result has been substituted by CMD-3 only for 0.33 → 1.0 GeV.
- The NLO HVP has not been updated.
- It is purely for demonstration purposes → <u>should not be taken as final!</u>

LORENZO COTROZZ

12/05/2023 - TAU2023 - MUON g - 2

Future experiments: JPARC and MUonE

J-PARC Muon g-2/EDM (see next talk by T. Mibe and picture of the apparatus above) **MUonE** (see next talk by R. Pilato):

- Extract leading-order HVP from hadronic running of $\alpha_{\rm QED}$ in the space-like region
- Measure directly muon-electron elastic scattering differential cross section shape
- Goal of 0.3% uncertainty statistical, similar systematic; comparable with data-driven

Summary and conclusions

Improvements from Run-1 (2021 result) to Run-2/3 (2023 result):

- <u>Statistic</u>: 4.7 times the Run-1 events \rightarrow 2.2 smaller
- <u>Systematic</u>: many hardware and software improvements, like new reconstruction, more studies on beam dynamics \rightarrow 2.2 times smaller

New experimental average has unprecedented precision of 190 ppb

***Puzzles** in the muon g - 2 theory: a firm comparison between theory and

experiment cannot be established (see https://muon-gm2-theory.illinois.edu/)

Talk on Friday by B. Kiburg: «Wishlist of G-2 results for Tau2025»

THANK YOU FOR YOUR ATTENTION!

ANY QUESTIONS?

LORENZO COTROZZI – LORENZO.COTROZZI@PHD.UNIPI.IT

UNIVERSITY OF PISA, INFN PISA

Fermilab

July 2023 collaboration meeting @ Liverpool, UK

BACKUP SLIDES

Extracting a_{μ}

2017 CODATA

12/05/2023 - TAU2023 - MUON g - 2

g-2

Muon g-2 detectors

24 calorimeters

- Each made of 6x9 PbF₂ crystals read out by large-area SiPMs
- 1296 channels individually calibrated by state-of-the-art laser system

- Each consisting of 8 modules
- Gas filled straws

More auxiliary detectors for dedicated runs, muon beam profile, ...

LORENZO COTROZZ

Trackers at 180°

Lost muons and residual slow term

LORENZO COTROZZ

28-Parameter fit and FFT of residuals

Two-level blinding

• Hardware: secret clock frequency, unknown to collaboration

Software: avoid biases among analyzers from 7 different groups

28

Software unblinding for Run-2/3

29

LORENZO COTROZZI

Detailed systematic effects on ω_a

Source	E989 goal [ppb]	Run-1 [ppb]	Run-2/3 [ppb]
Gain	20	8	5
Pileup	40	35	7
CBO	30	38	21
Total (including all contributions)	70	157	70

Reconstruction improvements

Seed-and-propagation algorithms that take into account time and energy resolution of detectors

31

LORENZO COTROZZ

Energy methods to build wiggle plot

- T-Method: count high-energy (>1.7 GeV) positrons over time
- A-Method: positron rate weighted by A(E) i.e. the asymmetry for each energy bin
 - ≻More positrons (>1.0 GeV)
 - Maximize statistical power

A-Method was the standard in Run-1

Beam dynamics uncertainties

Systematics	Description	Run-1 [ppb]	Run-2/3 [ppb]
C _e	Electric field effect on ω_a , minimized by «magic momentum» of 3.1 Gev/c. Improved analysis of momentum spread vs bunch time, and complimentary tracker information to reduce uncertainty	53	25
C_p	Caused by vertical betatron oscillations	13	10
C_{pa}	Correlation between muon decay position and ensemble- averaged initial phase. Mostly reduced because we fixed the damaged ESQ resistors that enhanced it in Run-1	75	15
C_{dd}	Higher-momentum muons have longer boosted lifetime	-	17
C_{ml}	Muons that are scattered away from the ring change the momentum distribution. Also reduced by fixing resistors	5	3

 C_{dd} was not evaluated in Run-1 but it was known to be significantly smaller

than other evaluated beam dynamics systematics

LORENZO COTROZZI

12/05/2023 - TAU2023 - MUON g - 2

Field uncertainties

Systematics	Description		Run-2/3 [ppb]
B_q	Vibrations caused by Quadrupole pulsing. Better mapping in azimuth in Run-2/3	92	20
B_k	Kicker-induced Eddy currents. Improved magnetometer measurements thanks to more stable setup that greatly reduced vibrations	37	13
Trolley calibration, tracking, muon weighting	Improvements in analysis and more trolley measurements. Stabilized temperature in the hall to reduce diurnal variations in the field	56	46

34

Field shimming: 2015-2016 campaign

Before

After

72 steel poles to increase homogeneity

- 864 wedges for dipole/quadrupole fields
- 144 edge shims for quadrupole/sextupole fields
- 48 iron top hats + 8000 surface iron foils to achieve desired uniformity

