The current status of the Mu2e experiment at Fermilab

<u>S. E. Müller</u>, A. Ferrari, O. Knodel, and R. Rachamin for the Mu2e-collaboration *Helmholtz-Zentrum Dresden-Rossendorf*

DPG Spring Meeting - Karlsruhe, March 08, 2024

Mitglied der Helmholtz-Gemeinschaf

S. E. Müller | HZDR | https://www.hzdr.de

Motivation

The Standard Model of particle physics currently contains:

- Quark mixing
- Transitions between charged and neutral leptons of same flavor
- Neutrino oscillations

No charged lepton flavor violation (CLFV) observed so far!

Mu2e will search for the neutrinoless conversion of a muon into an electron in the coulomb field of a nucleus ($\mu N \rightarrow eN$) with a projected

upper limit of
$$8 \times 10^{-17}$$
 (90% CL)

Current limit by SINDRUM-II (PSI): BR(μ Au \rightarrow eAu) $< 7 \times 10^{-13}$ (90% CL)

SM prediction via neutrino mixing is $\sim 10^{-54}$, but extensions of SM predict values up to $\sim 10^{-14}$ (Leptoquarks, heavy neutrinos, SUSY,...)

 \Rightarrow Unique possibility to test for New Physics

The Mu2e experiment

The Mu2e experiment will search for CLFV in the process ($\mu^- + AI \rightarrow e^- + AI$)

Stopped muons have a lifetime of 864 ns in the 1s-orbital of the Al nucleus

- about 60% of stopped muons undergo the muon capture reaction (e.g. $\mu^- + {}^{27}\text{Al} \rightarrow \nu_{\mu} + {}^{27}\text{Mg}$)
- $\blacksquare~\sim$ 40% of stopped muons decay in orbit (DIO)
 - Michel spectrum of decay electrons dies around $M_{\mu}/2$
- \blacksquare CLFV signal for $\mu \rightarrow e$ conversion gives single mono-energetic electron
 - $E_e = 104.973~MeV~\simeq M_{\mu}$

Normalized ratio
$$R_{\mu e} = rac{N(\mu^- + AI
ightarrow e^- + AI)}{N(\mu^- + AI
ightarrow$$
 nuclear capture)

The Mu2e experiment

- 8 GeV proton beam hits tungsten target and produces pions
- Pions are transported in s-shaped Transport Solenoid where they decay into muons
- Muons are stopped on aluminum target foils in Detector Solenoid
- Detectors (tracker and calorimeter) search for 105 MeV conversion electrons

The Mu2e experiment

Pulsed proton beam allows definition of a "Live Window" for the signal to suppress prompt background (1695 ns peak-to-peak):

- Fermilab accelerator complex provides optimal pulse spacing for Mu2e
- 700 ns delay allows to suppress prompt background from pions by $\sim 10^{-11}$
- Must achieve extinction (N $_{p^+}$ out of bunch)/(N $_{p^+}$ in bunch) $\leq 10^{-10}$

Straw drift tube tracker

- low mass straw drift tubes (5mm diam.)
- > 20 000 straws
- in vacuum and at \sim 1 T magn. field
- **•** momentum resolution $\sigma_{\rm p}$ < 180 keV/c

■ inner 38 cm not instrumented → "blind" to low-momenta DIO electrons

Straw drift tube tracker

■ inner 38 cm not instrumented → "blind" to low-momenta DIO electrons

Calorimeter

- composed of two rings separated by half a wavelength of signal electron trajectory helix
- each ring composed of ~700 pure CsI crystals read out by SiPMs
- independent measurement of
 - energy ($\sigma_{\rm E}/{\rm E}\sim$ 5%)
 - time ($\sigma_{
 m t}\sim$ 0.5ns)
 - position ($\sigma_{
 m Pos} \sim$ 1cm)
- independent trigger information
- particle ID
- calibration with activated liquid source

The cosmic ray veto detector

The cosmic ray veto system (CRV) covers entire Detector Solenoid and half of the Transportation Solenoid (TS)

The cosmic ray veto detector

Without CRV, \sim 1 background event per day mimicking signal produced by cosmic-ray muons

- 4 overlapping layers of scintillator bars (5 \times 2 \times \sim 450 cm³)
- 2 wavelength-shifting fibers/bar
- Read out both end of each fiber with SiPMs
- \blacksquare required inefficiency $\sim 10^{-4}$

The Stopping-Target Monitor

High-purity Germanium detector to determine overall muon-capture rate on AI to the level of 10%

- 347 keV 2p-1s X-ray (80% of muon stops)
- 844 keV delayed γ -ray (5% of muon stops)
- **1809 keV** *γ*-ray (30% of muon stops)

- behind tungsten collimator with 0.5 cm² holes
- sweeper magnet to reduce charged particle background and radiation damage to detector
- It was decided to accompany the HPGe detector with a LaBr₃ detector (worse energy resolution, but can take higher rates)

September 2022:

Mitglied der Helmholtz-Gemeinscha

February 2024:

fitglied der Helmholtz-Gemeinschaf

February 2024:

Mitglied der Helmholtz-Gemeinschaf

On Feb 20, 2024, the downstream part of the Transport Solenoid was brought to the Mu2e hall:

Mitglied der Helmholtz-Gemeinschaft S. E. Müller | HZDR | https://www.hzdr.de

On Feb 20, 2024, the downstream part of the Transport Solenoid was brought to the Mu2e hall:

Itglied der Helmholtz-Gemeinschaft F. Müller I. HZDB I https://www.bzdr.de

On Feb 20, 2024, the downstream part of the Transport Solenoid was brought to the Mu2e hall:

On Feb 20, 2024, the downstream part of the Transport Solenoid was brought to the Mu2e hall:

Production and Detector Solenoid status

Production Solenoid:

- Thermal shield end plates and insulation installed
- Installing piping for liquid nitrogen and liquid helium in chimney

Production and Detector Solenoid status

Detector Solenoid:

Cold mass assembly in progress: coils 1-8 assembled, 9 being aligned, 10-11 subassembly in progress

Tracker status

- All 20736 straws produced
- All 216 panels produced
- 33 / 36 planes built

- Currently installing electronics
- Quality Control and leak testing ongoing

Tracker production Lab:

Calorimeter status

- All crystals and SiPMs installed on the two discs
- Read-Out Units assembled and attached
- Currently working on cabling and electronics

CRV status

- 81/83 CRV modules produced
- Testing with cosmic rays
- Working on cabling and electronics

HZDR contributions to Mu2e

At HZDR, we contribute in the following areas to the Mu2e experiment:

- Beamtimes at the ELBE Center for High-Power Radiation Sources
 - Test of radiation hardness of detector components and electronics
 - Full test of the Stopping Target Monitor detector system, including the DAQ chain
- Simulation of the full experiment using the FLUKA radiation transport package
 - Shielding assessments, number of stopped muons per POT, particle yields, ...
 - Runs on fermigrid machines

Planned involvement in DAQ development using FPGAs

Conclusion & Outlook

- The Mu2e experiment at FERMILAB will search for the neutrinoless conversion of a muon into an electron in the coulomb field of an Aluminum nucleus
 - projected upper limit: 8×10^{-17} (90% CL)
- the experiment is now entering the on-site installation of magnets and detectors
- **HZDR** contributes with beamtimes at the **ELBE** Center for High-Power Radiation Sources
 - Radiation hardness of crystals and electronics
 - Detector tests for Stopping Target Monitor
- We are also setting up FLUKA simulations to cross check simulation results obtained with GEANT4 and MARS
- With the first run of physics dataking starting in the end of 2026, and the following runs after the long shutdown due to PIP-II installation at FNAL, Mu2e will either unambiguously discover CLFV or push the limit on muon → electron conversion by four orders of magnitude